These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 30282114)
1. Multi-Objective Genetic Algorithm Assisted by an Artificial Neural Network Metamodel for Shape Optimization of a Centrifugal Blood Pump. Ghadimi B; Nejat A; Nourbakhsh SA; Naderi N Artif Organs; 2019 May; 43(5):E76-E93. PubMed ID: 30282114 [TBL] [Abstract][Full Text] [Related]
2. Shape optimization of a centrifugal blood pump by coupling CFD with metamodel-assisted genetic algorithm. Ghadimi B; Nejat A; Nourbakhsh SA; Naderi N J Artif Organs; 2019 Mar; 22(1):29-36. PubMed ID: 30311022 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump. Boehning F; Timms DL; Amaral F; Oliveira L; Graefe R; Hsu PL; Schmitz-Rode T; Steinseifer U Artif Organs; 2011 Aug; 35(8):818-25. PubMed ID: 21843297 [TBL] [Abstract][Full Text] [Related]
4. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump. Good BC; Manning KB Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269 [TBL] [Abstract][Full Text] [Related]
5. Optimal bearing gap of a multiarc radial bearing in a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis. Kosaka R; Yasui K; Nishida M; Kawaguchi Y; Maruyama O; Yamane T Artif Organs; 2014 Sep; 38(9):818-22. PubMed ID: 25234763 [TBL] [Abstract][Full Text] [Related]
6. Impact of volute design features on hemodynamic performance and hemocompatibility of centrifugal blood pumps used in ECMO. Li Y; Wang H; Xi Y; Sun A; Deng X; Chen Z; Fan Y Artif Organs; 2023 Jan; 47(1):88-104. PubMed ID: 35962603 [TBL] [Abstract][Full Text] [Related]
7. Heuristic optimization of impeller sidewall gaps-based on the bees algorithm for a centrifugal blood pump by CFD. Onder A; Incebay O; Sen MA; Yapici R; Kalyoncu M Int J Artif Organs; 2021 Oct; 44(10):765-772. PubMed ID: 34128420 [TBL] [Abstract][Full Text] [Related]
8. The impact of rotor configurations on hemodynamic features, hemocompatibility and dynamic balance of the centrifugal blood pump: A numerical study. Li Y; Xi Y; Wang H; Sun A; Deng X; Chen Z; Fan Y Int J Numer Method Biomed Eng; 2023 Feb; 39(2):e3671. PubMed ID: 36507614 [TBL] [Abstract][Full Text] [Related]
9. Numerical study on the performance of centrifugal blood pump with superhydrophobic surface. Li C; Qiu H; Ma J; Wang Y Int J Artif Organs; 2022 Dec; 45(12):1028-1036. PubMed ID: 36028949 [TBL] [Abstract][Full Text] [Related]
10. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings. Leme J; da Silva C; Fonseca J; da Silva BU; Uebelhart B; Biscegli JF; Andrade A Artif Organs; 2013 Nov; 37(11):942-5. PubMed ID: 24219168 [TBL] [Abstract][Full Text] [Related]
11. Effect of blade curvature on the hemolytic and hydraulic characteristics of a centrifugal blood pump. Ozturk C; Aka IB; Lazoglu I Int J Artif Organs; 2018 Nov; 41(11):730-737. PubMed ID: 29998774 [TBL] [Abstract][Full Text] [Related]
12. The helical flow pump with a hydrodynamic levitation impeller. Abe Y; Ishii K; Isoyama T; Saito I; Inoue Y; Ono T; Nakagawa H; Nakano E; Fukazawa K; Ishihara K; Fukunaga K; Ono M; Imachi K J Artif Organs; 2012 Dec; 15(4):331-40. PubMed ID: 22926404 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the influence of blade configuration on the hemodynamic performance and blood damage of the centrifugal blood pump. Li Y; Yu J; Wang H; Xi Y; Deng X; Chen Z; Fan Y Artif Organs; 2022 Sep; 46(9):1817-1832. PubMed ID: 35436361 [TBL] [Abstract][Full Text] [Related]
14. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Fang P; Du J; Yu S Cardiovasc Eng Technol; 2020 Aug; 11(4):337-349. PubMed ID: 32410073 [TBL] [Abstract][Full Text] [Related]
16. Impeller (straight blade) design variations and their influence on the performance of a centrifugal blood pump. Fang P; Du J; Yu S Int J Artif Organs; 2020 Dec; 43(12):782-795. PubMed ID: 32312159 [TBL] [Abstract][Full Text] [Related]
17. CFD-Based Flow Channel Optimization and Performance Prediction for a Conical Axial Maglev Blood Pump. Yang W; Peng S; Xiao W; Hu Y; Wu H; Li M Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214544 [TBL] [Abstract][Full Text] [Related]
18. In vivo evaluation of the "TinyPump" as a pediatric left ventricular assist device. Kitao T; Ando Y; Yoshikawa M; Kobayashi M; Kimura T; Ohsawa H; Machida S; Yokoyama N; Sakota D; Konno T; Ishihara K; Takatani S Artif Organs; 2011 May; 35(5):543-53. PubMed ID: 21595723 [TBL] [Abstract][Full Text] [Related]
19. Hemodynamic evaluation and Fu M; Liu G; Wang W; Gao B; Ji B; Chang Y; Liu Y Ann Transl Med; 2021 Apr; 9(8):679. PubMed ID: 33987377 [TBL] [Abstract][Full Text] [Related]
20. CFD Analysis and Optimum Design for a Centrifugal Pump Using an Effectively Artificial Intelligent Algorithm. Wang CN; Yang FC; Nguyen VTT; Vo NTM Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014130 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]