BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 30282114)

  • 21. Computational Fluid Dynamics-Based Design Optimization Method for Archimedes Screw Blood Pumps.
    Yu H; Janiga G; Thévenin D
    Artif Organs; 2016 Apr; 40(4):341-52. PubMed ID: 26526039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydraulic and hemodynamic performance of a minimally invasive intra-arterial right ventricular assist device.
    Hsu PL; Graefe R; Boehning F; Wu C; Parker J; Autschbach R; Schmitz-Rode T; Steinseifer U
    Int J Artif Organs; 2014 Sep; 37(9):697-705. PubMed ID: 25262631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational fluid dynamics-based hydraulic and hemolytic analyses of a novel left ventricular assist blood pump.
    Yang XC; Zhang Y; Gui XM; Hu SS
    Artif Organs; 2011 Oct; 35(10):948-55. PubMed ID: 21517911
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disposable MagLev centrifugal blood pump utilizing a cone-shaped impeller.
    Hijikata W; Sobajima H; Shinshi T; Nagamine Y; Wada S; Takatani S; Shimokohbe A
    Artif Organs; 2010 Aug; 34(8):669-77. PubMed ID: 20528854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of a Screw Centrifugal Blood Pump Based on Random Forest and Multi-Objective Gray Wolf Optimization Algorithm.
    Jing T; Sun H; Cheng J; Zhou L
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characteristics of a blood pump combining the centrifugal and axial pumping principles: the spiral pump.
    Andrade A; Biscegli J; Dinkhuysen J; Sousa JE; Ohashi Y; Hemmings S; Glueck J; Kawahito K; Nosé Y
    Artif Organs; 1996 Jun; 20(6):605-12. PubMed ID: 8817964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical study of a bio-centrifugal blood pump with straight impeller blade profiles.
    Song G; Chua LP; Lim TM
    Artif Organs; 2010 Feb; 34(2):98-104. PubMed ID: 19817732
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump.
    Chan WK; Wong YW; Ding Y; Chua LP; Yu SC
    Artif Organs; 2002 Sep; 26(9):785-93. PubMed ID: 12197935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of the impeller shroud performance of an axial flow ventricular assist device using computational fluid dynamics.
    Su B; Chua LP; Lim TM; Zhou T
    Artif Organs; 2010 Sep; 34(9):745-59. PubMed ID: 20883393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geometric optimization of a step bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.
    Kosaka R; Yada T; Nishida M; Maruyama O; Yamane T
    Artif Organs; 2013 Sep; 37(9):778-85. PubMed ID: 23834855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a magnetically suspended centrifugal pump as a cardiac assist device for long-term application.
    Nishimura K; Park CH; Akamatsu T; Yamada T; Ban T
    ASAIO J; 1996; 42(1):68-71. PubMed ID: 8808462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of leakage flow in a shrouded centrifugal blood pump.
    Teo JB; Chan WK; Wong YW
    Artif Organs; 2010 Sep; 34(9):788-91. PubMed ID: 20883397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional numerical prediction of stress loading of blood particles in a centrifugal pump.
    Bludszuweit C
    Artif Organs; 1995 Jul; 19(7):590-6. PubMed ID: 8572957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.
    Zhu L; Zhang X; Yao Z
    Artif Organs; 2010 Mar; 34(3):185-92. PubMed ID: 20447042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical simulation of centrifugal and hemodynamically levitated LVAD for performance improvement.
    Kannojiya V; Das AK; Das PK
    Artif Organs; 2020 Feb; 44(2):E1-E19. PubMed ID: 31269235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of the influence of volute design on journal bearing bias force using computational fluid dynamics.
    Graefe R; Timms D; Böhning F; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2010 Sep; 34(9):760-5. PubMed ID: 20883394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of a miniature Maglev ventricular assist device for pediatric circulatory support.
    Zhang J; Koert A; Gellman B; Gempp TM; Dasse KA; Gilbert RJ; Griffith BP; Wu ZJ
    ASAIO J; 2007; 53(1):23-31. PubMed ID: 17237645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hemodynamic investigation and in vitro evaluation of a novel mixed-flow blood pump.
    Qu Y; Guo Z; Zhang J; Li G; Zhang S; Li D
    Artif Organs; 2022 Aug; 46(8):1533-1543. PubMed ID: 35167128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational fluid dynamics analysis of the pediatric tiny centrifugal blood pump (TinyPump).
    Kido K; Hoshi H; Watanabe N; Kataoka H; Ohuchi K; Asama J; Shinshi T; Yoshikawa M; Takatani S
    Artif Organs; 2006 May; 30(5):392-9. PubMed ID: 16683958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal design of the hydrodynamic multi-arc bearing in a centrifugal blood pump for the improvement of bearing stiffness and hemolysis level.
    Yasui K; Kosaka R; Nishida M; Maruyama O; Kawaguchi Y; Yamane T
    Artif Organs; 2013 Sep; 37(9):768-77. PubMed ID: 23980526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.