These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 30282326)

  • 1. New concepts on carbon redirection in wastewater treatment plants: A review.
    Sancho I; Lopez-Palau S; Arespacochaga N; Cortina JL
    Sci Total Environ; 2019 Jan; 647():1373-1384. PubMed ID: 30282326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the potential for operating carbon neutral WWTPs in China.
    Hao X; Liu R; Huang X
    Water Res; 2015 Dec; 87():424-31. PubMed ID: 26072280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the fate of organic micropollutants in novel wastewater treatment plant configurations through an empirical mechanistic model.
    Taboada-Santos A; Behera CR; Sin G; Gernaey KV; Mauricio-Iglesias M; Carballa M; Lema JM
    Sci Total Environ; 2020 May; 716():137079. PubMed ID: 32044492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The correlations among wastewater internal energy, energy consumption and energy recovery/production potentials in wastewater treatment plant: An assessment of the energy balance.
    Yang X; Wei J; Ye G; Zhao Y; Li Z; Qiu G; Li F; Wei C
    Sci Total Environ; 2020 Apr; 714():136655. PubMed ID: 32018952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentials and limits of anaerobic digestion of sewage sludge: energy self-sufficient municipal wastewater treatment plant?
    Jenicek P; Bartacek J; Kutil J; Zabranska J; Dohanyos M
    Water Sci Technol; 2012; 66(6):1277-81. PubMed ID: 22828306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A relationship between phages and organic carbon in wastewater treatment plant effluents.
    Modin O; Fuad N; Abadikhah M; I'Ons D; Ossiansson E; Gustavsson DJI; Edefell E; Suarez C; Persson F; Wilén BM
    Water Res X; 2022 Aug; 16():100146. PubMed ID: 35761925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-rate activated sludge system for carbon management--Evaluation of crucial process mechanisms and design parameters.
    Jimenez J; Miller M; Bott C; Murthy S; De Clippeleir H; Wett B
    Water Res; 2015 Dec; 87():476-82. PubMed ID: 26260539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.
    Ekama GA
    Water Res; 2009 May; 43(8):2101-20. PubMed ID: 19345392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrofitting conventional primary clarifiers to activated primary clarifiers to enhance nutrient removal and energy conservation in WWTPs in Beijing, China.
    Wang JW; Zhang TZ; Chen JN; Hu ZR
    Water Sci Technol; 2011; 63(7):1446-52. PubMed ID: 21508549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand.
    Kunacheva C; Tanaka S; Fujii S; Boontanon SK; Musirat C; Wongwattana T; Shivakoti BR
    Chemosphere; 2011 Apr; 83(6):737-44. PubMed ID: 21439605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.
    Puig S; van Loosdrecht MC; Flameling AG; Colprim J; Meijer SC
    Water Res; 2010 Jun; 44(11):3375-84. PubMed ID: 20430413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater.
    Kreuzinger N; Clara M; Strenn B; Kroiss H
    Water Sci Technol; 2004; 50(5):149-56. PubMed ID: 15497842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes.
    Gori R; Jiang LM; Sobhani R; Rosso D
    Water Res; 2011 Nov; 45(18):5858-72. PubMed ID: 21943568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transitioning Wastewater Treatment Plants toward Circular Economy and Energy Sustainability.
    Ghimire U; Sarpong G; Gude VG
    ACS Omega; 2021 May; 6(18):11794-11803. PubMed ID: 34056333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy intensity modeling for wastewater treatment technologies.
    Molinos-Senante M; Sala-Garrido R; Iftimi A
    Sci Total Environ; 2018 Jul; 630():1565-1572. PubMed ID: 29554773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies.
    Egle L; Rechberger H; Krampe J; Zessner M
    Sci Total Environ; 2016 Nov; 571():522-42. PubMed ID: 27453138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of micropollutants in municipal wastewater treatment plants by powder-activated carbon.
    Boehler M; Zwickenpflug B; Hollender J; Ternes T; Joss A; Siegrist H
    Water Sci Technol; 2012; 66(10):2115-21. PubMed ID: 22949241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants.
    Guo R; Sim WJ; Lee ES; Lee JH; Oh JE
    Water Res; 2010 Jun; 44(11):3476-86. PubMed ID: 20417541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy demand for elimination of organic micropollutants in municipal wastewater treatment plants.
    Mousel D; Palmowski L; Pinnekamp J
    Sci Total Environ; 2017 Jan; 575():1139-1149. PubMed ID: 27712866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.