These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30282330)

  • 1. Mechanical loading characteristics of total hip prosthetics subjected to dynamic loading cycles.
    Kalayarasan M; Shankar S; Manikandan M; Adithan K
    Biomed Mater Eng; 2018; 29(6):723-737. PubMed ID: 30282330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple fully integrated contact-coupled wear prediction for ultra-high molecular weight polyethylene hip implants.
    Kang L; Galvin AL; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 2006 Jan; 220(1):33-46. PubMed ID: 16459444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An axisymmetric contact model of ultra high molecular weight polyethylene cups against metallic femoral heads for artificial hip joint replacements.
    Jin ZM; Heng SM; Ng HW; Auger DD
    Proc Inst Mech Eng H; 1999; 213(4):317-27. PubMed ID: 10466363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wear and deformation of ceramic-on-polyethylene total hip replacements with joint laxity and swing phase microseparation.
    Williams S; Butterfield M; Stewart T; Ingham E; Stone M; Fisher J
    Proc Inst Mech Eng H; 2003; 217(2):147-53. PubMed ID: 12666782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of acetabular cup rim design on the contact stress during edge loading in ceramic-on-ceramic hip prostheses.
    Mak M; Jin Z; Fisher J; Stewart TD
    J Arthroplasty; 2011 Jan; 26(1):131-6. PubMed ID: 20149581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of contact mechanics in McKee-farrar metal-on-metal hip implants.
    Yew A; Jagatia M; Ensaff H; Jin ZM
    Proc Inst Mech Eng H; 2003; 217(5):333-40. PubMed ID: 14558645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contact mechanics of metal-on-metal hip implants employing a metallic cup with a UHMWPE backing.
    Liu F; Jin ZM; Grigoris P; Hirt F; Rieker C
    Proc Inst Mech Eng H; 2003; 217(3):207-13. PubMed ID: 12807161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of microseparation on contact mechanics in ceramic-on-ceramic hip joint replacements.
    Mak MM; Besong AA; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 2002; 216(6):403-8. PubMed ID: 12502004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method.
    Andreaus U; Colloca M
    Proc Inst Mech Eng H; 2009 Jul; 223(5):589-605. PubMed ID: 19623912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of contact mechanics in ceramic-on-ceramic hip joint replacements.
    Mak MM; Jin ZM
    Proc Inst Mech Eng H; 2002; 216(4):231-6. PubMed ID: 12206519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is There a Difference in Revision Risk Between Metal and Ceramic Heads on Highly Crosslinked Polyethylene Liners?
    Cafri G; Paxton EW; Love R; Bini SA; Kurtz SM
    Clin Orthop Relat Res; 2017 May; 475(5):1349-1355. PubMed ID: 27385222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact mechanics analysis of metal-on-metal hip resurfacing prostheses.
    Udofia IJ; Yew A; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(5):293-305. PubMed ID: 15532995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady-state elastohydrodynamic lubrication analysis of a metal-on-metal hip implant employing a metallic cup with an ultra-high molecular weight polyethylene backing.
    Liu F; Wang FC; Jin ZM; Hirt F; Rieker C; Grigoris P
    Proc Inst Mech Eng H; 2004; 218(4):261-70. PubMed ID: 15376728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general axisymmetric contact mechanics model for layered surfaces, with particular reference to artificial hip joint replacements.
    Jin ZM
    Proc Inst Mech Eng H; 2000; 214(5):425-35. PubMed ID: 11109850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient elastohydrodynamic lubrication analysis of metal-on-metal hip implant under simulated walking conditions.
    Liu F; Jin ZM; Hirt F; Rieker C; Roberts P; Grigoris P
    J Biomech; 2006; 39(5):905-14. PubMed ID: 16199048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation on mechanical failure of hip joint using finite element method.
    Sofuoglu H; Cetin ME
    Biomed Tech (Berl); 2015 Dec; 60(6):603-16. PubMed ID: 25996481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved mathematical model of the wear of the cup articular surface in hip joint prostheses and comparison with retrieved components.
    Raimondi MT; Santambrogio C; Pietrabissa R; Raffelini F; Molfetta L
    Proc Inst Mech Eng H; 2001; 215(4):377-91. PubMed ID: 11521761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure analysis of a ceramic bearing acetabular component.
    Poggie RA; Turgeon TR; Coutts RD
    J Bone Joint Surg Am; 2007 Feb; 89(2):367-75. PubMed ID: 17272452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities.
    Hua X; Li J; Jin Z; Fisher J
    Med Eng Phys; 2016 Jun; 38(6):518-25. PubMed ID: 27056255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of elastohydrodynamic lubrication in McKee-Farrar metal-on-metal hip joint replacement.
    Yew A; Udofia I; Jagatia M; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(1):27-34. PubMed ID: 14982343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.