BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30282340)

  • 41. Viscoelastic behaviour and failure of bovine cancellous bone under constant strain rate.
    Guedes RM; Simões JA; Morais JL
    J Biomech; 2006; 39(1):49-60. PubMed ID: 16271587
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Material properties of femoral cancellous bone in axial loading. Part II: Time dependent properties.
    Zilch H; Rohlmann A; Bergmann G; Kölbel R
    Arch Orthop Trauma Surg (1978); 1980; 97(4):257-62. PubMed ID: 7458609
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Large-scale finite element analysis of human cancellous bone tissue micro computer tomography data: a convergence study.
    Chen Y; Pani M; Taddei F; Mazzà C; Li X; Viceconti M
    J Biomech Eng; 2014 Oct; 136(10):101013. PubMed ID: 25070476
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Micro-cantilever bending for elastic modulus measurements of a single trabecula in cancellous bone.
    Yamada S; Tadano S; Fukasawa K
    J Biomech; 2016 Dec; 49(16):4124-4127. PubMed ID: 27793405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The biomechanical effect of changes in cancellous bone density on synthetic femur behaviour.
    Nicayenzi B; Shah S; Schemitsch EH; Bougherara H; Zdero R
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1050-60. PubMed ID: 22292203
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimentally characterizing the spatially varying anisotropic mechanical property of cancellous bone via a Bayesian calibration method.
    Yan Z; Hu Y; Shi H; Wang P; Liu Z; Tian Y; Zhuang Z
    J Mech Behav Biomed Mater; 2023 Feb; 138():105643. PubMed ID: 36603525
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correlations between structural and mechanical properties of human trabecular femur bone.
    Nikodem A
    Acta Bioeng Biomech; 2012; 14(2):37-46. PubMed ID: 22793376
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Achievable accuracy of hip screw holding power estimation by insertion torque measurement.
    Erani P; Baleani M
    Clin Biomech (Bristol, Avon); 2018 Feb; 52():57-65. PubMed ID: 29360050
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Strain rate dependency of bovine trabecular bone under impact loading at sideways fall velocity.
    Enns-Bray WS; Ferguson SJ; Helgason B
    J Biomech; 2018 Jun; 75():46-52. PubMed ID: 29773425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Biomechanical effect of mushroom shaped surface prosthesis on femoral neck after replacement].
    Zhang G; Jia Q; Gu H; Chen Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Dec; 23(12):1462-5. PubMed ID: 20073311
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Application of ultrasonic microscopy in biomechanical properties measurement of cancellous bone].
    Yu ZY; Gao Y; Zhang WQ; Wang DL; Wang X
    Zhongguo Gu Shang; 2008 Jul; 21(7):523-4. PubMed ID: 19102156
    [TBL] [Abstract][Full Text] [Related]  

  • 54. FE and experimental study on how the cortex material properties of synthetic femurs affect strain levels.
    Lopes VMM; Neto MA; Amaro AM; Roseiro LM; Paulino MF
    Med Eng Phys; 2017 Aug; 46():96-109. PubMed ID: 28645848
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.
    Alomari AH; Wille ML; Langton CM
    Bone; 2018 Feb; 107():145-153. PubMed ID: 29198979
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of bone mechanical strenght and fracture risk assessment (Frax) in patients with hip joint replacement surgery.
    Rodrigues A; Caetano-Lopes J; Nery A; Sousa E; Polido-Pereira J; Vale M; Amaral P; Romeu JC; Viana Queiroz M; Monteiro J; Vaz MF; Fonseca JE; Canhão H
    Acta Reumatol Port; 2009; 34(3):504-10. PubMed ID: 19830928
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantifying the regional variations in the mechanical properties of cancellous bone of the tibia using indentation testing and quantitative computed tomographic imaging.
    Vijayakumar V; Quenneville CE
    Proc Inst Mech Eng H; 2016 Jun; 230(6):588-93. PubMed ID: 27068841
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro testing of the deformation pattern and initial stability of a cementless stem coupled to an experimental femoral head, with increased offset and altered femoral neck angles.
    Wik TS; Enoksen C; Klaksvik J; Østbyhaug PO; Foss OA; Ludvigsen J; Aamodt A
    Proc Inst Mech Eng H; 2011 Aug; 225(8):797-808. PubMed ID: 21922956
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fracture toughness and compressive properties of cancellous bone at the head of the femur and relationships to non-invasive skeletal assessment measurements.
    Cook RB; Curwen C; Tasker T; Zioupos P
    Med Eng Phys; 2010 Nov; 32(9):991-7. PubMed ID: 20674457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.