These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Choosing the rules: distinct and overlapping frontoparietal representations of task rules for perceptual decisions. Zhang J; Kriegeskorte N; Carlin JD; Rowe JB J Neurosci; 2013 Jul; 33(29):11852-62. PubMed ID: 23864675 [TBL] [Abstract][Full Text] [Related]
7. Combining Repetition Suppression and Pattern Analysis Provides New Insights into the Role of M1 and Parietal Areas in Skilled Sequential Actions. Berlot E; Popp NJ; Grafton ST; Diedrichsen J J Neurosci; 2021 Sep; 41(36):7649-7661. PubMed ID: 34312223 [TBL] [Abstract][Full Text] [Related]
8. A critical re-evaluation of fMRI signatures of motor sequence learning. Berlot E; Popp NJ; Diedrichsen J Elife; 2020 May; 9():. PubMed ID: 32401193 [TBL] [Abstract][Full Text] [Related]
9. Overlapping frontoparietal networks for tactile and visual parametric working memory representations. Wu YH; Uluç I; Schmidt TT; Tertel K; Kirilina E; Blankenburg F Neuroimage; 2018 Feb; 166():325-334. PubMed ID: 29107771 [TBL] [Abstract][Full Text] [Related]
10. Representations of common event structure in medial temporal lobe and frontoparietal cortex support efficient inference. Morton NW; Schlichting ML; Preston AR Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29338-29345. PubMed ID: 33229532 [TBL] [Abstract][Full Text] [Related]
11. A Gradient of Sharpening Effects by Perceptual Prior across the Human Cortical Hierarchy. González-García C; He BJ J Neurosci; 2021 Jan; 41(1):167-178. PubMed ID: 33208472 [TBL] [Abstract][Full Text] [Related]
12. Longitudinal development of frontoparietal activity during feedback learning: Contributions of age, performance, working memory and cortical thickness. Peters S; Van Duijvenvoorde AC; Koolschijn PC; Crone EA Dev Cogn Neurosci; 2016 Jun; 19():211-22. PubMed ID: 27104668 [TBL] [Abstract][Full Text] [Related]
13. Feature-Selective Attentional Modulations in Human Frontoparietal Cortex. Ester EF; Sutterer DW; Serences JT; Awh E J Neurosci; 2016 Aug; 36(31):8188-99. PubMed ID: 27488638 [TBL] [Abstract][Full Text] [Related]
14. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks. Long NM; Kuhl BA J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930 [TBL] [Abstract][Full Text] [Related]
16. Modulation of neural activity during observational learning of actions and their sequential orders. Frey SH; Gerry VE J Neurosci; 2006 Dec; 26(51):13194-201. PubMed ID: 17182769 [TBL] [Abstract][Full Text] [Related]
17. Imagined and Executed Actions in the Human Motor System: Testing Neural Similarity Between Execution and Imagery of Actions with a Multivariate Approach. Zabicki A; de Haas B; Zentgraf K; Stark R; Munzert J; Krüger B Cereb Cortex; 2017 Sep; 27(9):4523-4536. PubMed ID: 27600847 [TBL] [Abstract][Full Text] [Related]
18. Neural Organization of Hierarchical Motor Sequence Representations in the Human Neocortex. Yokoi A; Diedrichsen J Neuron; 2019 Sep; 103(6):1178-1190.e7. PubMed ID: 31345643 [TBL] [Abstract][Full Text] [Related]
19. Distinct representations in occipito-temporal, parietal, and premotor cortex during action perception revealed by fMRI and computational modeling. Urgen BA; Pehlivan S; Saygin AP Neuropsychologia; 2019 Apr; 127():35-47. PubMed ID: 30772426 [TBL] [Abstract][Full Text] [Related]
20. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas. Pilgramm S; de Haas B; Helm F; Zentgraf K; Stark R; Munzert J; Krüger B Hum Brain Mapp; 2016 Jan; 37(1):81-93. PubMed ID: 26452176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]