These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 30282733)

  • 1. Nonsaturating large magnetoresistance in semimetals.
    Leahy IA; Lin YP; Siegfried PE; Treglia AC; Song JCW; Nandkishore RM; Lee M
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10570-10575. PubMed ID: 30282733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS.
    Singha R; Pariari AK; Satpati B; Mandal P
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2468-2473. PubMed ID: 28223488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Carrier Transport Induced Hall Anomaly and Large Tunable Magnetoresistance in Dirac Semimetal Cd3As2 Nanoplates.
    Li CZ; Li JG; Wang LX; Zhang L; Zhang JM; Yu D; Liao ZM
    ACS Nano; 2016 Jun; 10(6):6020-8. PubMed ID: 27166504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Mobility Topological Semimetals as Novel Materials for Huge Magnetoresistance Effect and New Type of Quantum Hall Effect.
    Zivieri R; Lumetti S; Létang J
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling of Berry-curvature monopole dominated large linear positive magnetoresistance.
    Zhang S; Wang Y; Zeng Q; Shen J; Zheng X; Yang J; Wang Z; Xi C; Wang B; Zhou M; Huang R; Wei H; Yao Y; Wang S; Parkin SSP; Felser C; Liu E; Shen B
    Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2208505119. PubMed ID: 36322772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Evidence for Charge Compensation-Induced Large Magnetoresistance in Thin WTe
    Wang Y; Wang L; Liu X; Wu H; Wang P; Yan D; Cheng B; Shi Y; Watanabe K; Taniguchi T; Liang SJ; Miao F
    Nano Lett; 2019 Jun; 19(6):3969-3975. PubMed ID: 31082263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetotransport properties of compensated semimetal HfB
    Wang Q; Yin Q; Lei H
    J Phys Condens Matter; 2020 Jan; 32(1):015601. PubMed ID: 31509821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family.
    Liu ZK; Yang LX; Sun Y; Zhang T; Peng H; Yang HF; Chen C; Zhang Y; Guo YF; Prabhakaran D; Schmidt M; Hussain Z; Mo SK; Felser C; Yan B; Chen YL
    Nat Mater; 2016 Jan; 15(1):27-31. PubMed ID: 26524130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single crystal growth and physical properties of layered compound SrCdBi
    Yang Y; Fu Y; Zhu W; He J; Liu B; Liu C; Li L; Niu C; Luo Y
    J Phys Condens Matter; 2022 Jun; 34(31):. PubMed ID: 35588724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relativistic mechanism of chiral magnetic current in Weyl semimetals with tilted dispersion.
    Alisultanov ZZ
    J Phys Condens Matter; 2020 Mar; 32(11):115502. PubMed ID: 31770740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermopower and thermal conductivity in the Weyl semimetal NbP.
    Stockert U; Dos Reis RD; Ajeesh MO; Watzman SJ; Schmidt M; Shekhar C; Heremans JP; Felser C; Baenitz M; Nicklas M
    J Phys Condens Matter; 2017 Aug; 29(32):325701. PubMed ID: 28628029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetoresistance in two-component systems.
    Alekseev PS; Dmitriev AP; Gornyi IV; Kachorovskii VY; Narozhny BN; Schütt M; Titov M
    Phys Rev Lett; 2015 Apr; 114(15):156601. PubMed ID: 25933326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrections to the magnetoresistance formula for semimetals with Dirac electrons: the Boltzmann equation approach validated by the Kubo formula.
    Owada M; Awashima Y; Fuseya Y
    J Phys Condens Matter; 2018 Nov; 30(44):445601. PubMed ID: 30203784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative Magnetoresistance in the GeSn Strip.
    Shu K; Wang N; Huo N; Wan F; Li J; Xue C
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29960-29964. PubMed ID: 34128632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP
    Kumar N; Sun Y; Xu N; Manna K; Yao M; Süss V; Leermakers I; Young O; Förster T; Schmidt M; Borrmann H; Yan B; Zeitler U; Shi M; Felser C; Shekhar C
    Nat Commun; 2017 Nov; 8(1):1642. PubMed ID: 29158479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A New Three-Dimensional Subsulfide Ir
    Khoury JF; Rettie AJE; Khan MA; Ghimire NJ; Robredo I; Pfluger JE; Pal K; Wolverton C; Bergara A; Jiang JS; Schoop LM; Vergniory MG; Mitchell JF; Chung DY; Kanatzidis MG
    J Am Chem Soc; 2019 Dec; 141(48):19130-19137. PubMed ID: 31697089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme magnetoresistance at high-mobility oxide heterointerfaces with dynamic defect tunability.
    Christensen DV; Steegemans TS; D Pomar T; Chen YZ; Smith A; Strocov VN; Kalisky B; Pryds N
    Nat Commun; 2024 May; 15(1):4249. PubMed ID: 38762504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Low-Field Sondheimer Oscillations to High-Field Very Large and Linear Magnetoresistance in a SrTiO
    Mallik S; Ménard GC; Saïz G; Gilmutdinov I; Vignolles D; Proust C; Gloter A; Bergeal N; Gabay M; Bibes M
    Nano Lett; 2022 Jan; 22(1):65-72. PubMed ID: 34914397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chirality-Dependent Hall Effect and Antisymmetric Magnetoresistance in a Magnetic Weyl Semimetal.
    Jiang B; Wang L; Bi R; Fan J; Zhao J; Yu D; Li Z; Wu X
    Phys Rev Lett; 2021 Jun; 126(23):236601. PubMed ID: 34170154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral Anomaly Induced Negative Magnetoresistance and Weak Anti-Localization in Weyl Semimetal Bi0.097Sb0.03 alloy.
    Kumar P; Nagpal V; Sudesh S; Patnaik S
    J Phys Condens Matter; 2021 Apr; ():. PubMed ID: 33849001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.