These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 30283137)

  • 1. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture.
    Reich PB; Sendall KM; Stefanski A; Rich RL; Hobbie SE; Montgomery RA
    Nature; 2018 Oct; 562(7726):263-267. PubMed ID: 30283137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits.
    Jassey VEJ; Signarbieux C
    Glob Chang Biol; 2019 Nov; 25(11):3859-3870. PubMed ID: 31502398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boreal and temperate trees show strong acclimation of respiration to warming.
    Reich PB; Sendall KM; Stefanski A; Wei X; Rich RL; Montgomery RA
    Nature; 2016 Mar; 531(7596):633-6. PubMed ID: 26982730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open-air experimental warming and reduced rainfall in a southern boreal forest.
    Stefanski A; Bermudez R; Sendall KM; Montgomery RA; Reich PB
    Glob Chang Biol; 2020 Feb; 26(2):746-759. PubMed ID: 31437334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions.
    Moyes AB; Germino MJ; Kueppers LM
    New Phytol; 2015 Sep; 207(4):1005-14. PubMed ID: 25902893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem.
    Albert KR; Ro-Poulsen H; Mikkelsen TN; Michelsen A; van der Linden L; Beier C
    J Exp Bot; 2011 Aug; 62(12):4253-66. PubMed ID: 21586430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming.
    Sendall KM; Reich PB; Zhao C; Jihua H; Wei X; Stefanski A; Rice K; Rich RL; Montgomery RA
    Glob Chang Biol; 2015 Mar; 21(3):1342-57. PubMed ID: 25354151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings.
    Liu X; Fan Y; Long J; Wei R; Kjelgren R; Gong C; Zhao J
    J Environ Sci (China); 2013 Mar; 25(3):585-95. PubMed ID: 23923433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growing-season warming and winter soil freeze/thaw cycles increase transpiration in a northern hardwood forest.
    Harrison JL; Sanders-DeMott R; Reinmann AB; Sorensen PO; Phillips NG; Templer PH
    Ecology; 2020 Nov; 101(11):e03173. PubMed ID: 32852804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.
    Rowland L; Lobo-do-Vale RL; Christoffersen BO; Melém EA; Kruijt B; Vasconcelos SS; Domingues T; Binks OJ; Oliveira AA; Metcalfe D; da Costa AC; Mencuccini M; Meir P
    Glob Chang Biol; 2015 Dec; 21(12):4662-72. PubMed ID: 26179437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonal photosynthetic responses of European oaks to drought and elevated daytime temperature.
    Arend M; Brem A; Kuster TM; Günthardt-Goerg MS
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():169-76. PubMed ID: 22776350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.
    Rich RL; Stefanski A; Montgomery RA; Hobbie SE; Kimball BA; Reich PB
    Glob Chang Biol; 2015 Jun; 21(6):2334-48. PubMed ID: 25640748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis.
    Aspinwall MJ; Drake JE; Campany C; Vårhammar A; Ghannoum O; Tissue DT; Reich PB; Tjoelker MG
    New Phytol; 2016 Oct; 212(2):354-67. PubMed ID: 27284963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and biochemical responses of Quercus pubescens to air warming and drought on acidic and calcareous soils.
    Contran N; Günthardt-Goerg MS; Kuster TM; Cerana R; Crosti P; Paoletti E
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():157-68. PubMed ID: 22672383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of photosynthesis and component processes to drought and temperature stress: are Mediterranean trees fit for climate change?
    Sperlich D; Chang CT; Peñuelas J; Sabaté S
    Tree Physiol; 2019 Dec; 39(11):1783-1805. PubMed ID: 31553458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf-to-branch scaling of C-gain in field-grown almond trees under different soil moisture regimes.
    Egea G; González-Real MM; Martin-Gorriz B; Baille A
    Tree Physiol; 2014 Jun; 34(6):619-29. PubMed ID: 24970267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate warming alters photosynthetic responses to elevated CO
    Sage E; Heisler-White J; Morgan J; Pendall E; Williams DG
    Am J Bot; 2020 Sep; 107(9):1238-1252. PubMed ID: 32931042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of elevated CO₂, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status.
    Albert KR; Ro-Poulsen H; Mikkelsen TN; Michelsen A; Van Der Linden L; Beier C
    Plant Cell Environ; 2011 Jul; 34(7):1207-22. PubMed ID: 21410715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneity of competition at decameter scale: patches of high canopy leaf area in a shade-intolerant larch stand transpire less yet are more sensitive to drought.
    Xiong W; Oren R; Wang Y; Yu P; Liu H; Cao G; Xu L; Wang Y; Zuo H
    Tree Physiol; 2015 May; 35(5):470-84. PubMed ID: 25836360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.