These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 30283199)
41. Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles. Gambin B; Kruglenko E; Tymkiewicz R; Litniewski J Med Phys; 2019 Oct; 46(10):4361-4370. PubMed ID: 31359439 [TBL] [Abstract][Full Text] [Related]
42. Fabrication of Two Flow Phantoms for Doppler Ultrasound Imaging. Zhou X; Kenwright DA; Wang S; Hossack JA; Hoskins PR IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):53-65. PubMed ID: 27925588 [TBL] [Abstract][Full Text] [Related]
43. Development of a Tissue-Mimicking Phantom of the Brain for Ultrasonic Studies. Taghizadeh S; Labuda C; Mobley J Ultrasound Med Biol; 2018 Dec; 44(12):2813-2820. PubMed ID: 30274683 [TBL] [Abstract][Full Text] [Related]
44. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence. Brewin MP; Pike LC; Rowland DE; Birch MJ Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021 [TBL] [Abstract][Full Text] [Related]
45. Quantitative relationship between tissue composition and scattering of ultrasound. Sehgal CM J Acoust Soc Am; 1993 Oct; 94(4):1944-52. PubMed ID: 8227740 [TBL] [Abstract][Full Text] [Related]
46. Tissue mimicking materials for a multi-imaging modality prostate phantom. D'Souza WD; Madsen EL; Unal O; Vigen KK; Frank GR; Thomadsen BR Med Phys; 2001 Apr; 28(4):688-700. PubMed ID: 11339767 [TBL] [Abstract][Full Text] [Related]
47. Evaluation of the effect of machine settings on quantitative three-dimensional power Doppler angiography: an in-vitro flow phantom experiment. Raine-Fenning NJ; Nordin NM; Ramnarine KV; Campbell BK; Clewes JS; Perkins A; Johnson IR Ultrasound Obstet Gynecol; 2008 Sep; 32(4):551-9. PubMed ID: 18726932 [TBL] [Abstract][Full Text] [Related]
48. Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels. Casciaro S; Conversano F; Musio S; Casciaro E; Demitri C; Sannino A J Mater Sci Mater Med; 2009 Apr; 20(4):983-9. PubMed ID: 19052848 [TBL] [Abstract][Full Text] [Related]
49. Theoretical and phantom based investigation of the impact of sound speed and backscatter variations on attenuation slope estimation. Omari E; Lee H; Varghese T Ultrasonics; 2011 Aug; 51(6):758-67. PubMed ID: 21477832 [TBL] [Abstract][Full Text] [Related]
50. Acoustic characterization of tissue-mimicking materials for ultrasound perfusion imaging research. Chen P; Pollet AMAO; Panfilova A; Zhou M; Turco S; den Toonder JMJ; Mischi M Ultrasound Med Biol; 2022 Jan; 48(1):124-142. PubMed ID: 34654580 [TBL] [Abstract][Full Text] [Related]
51. A wall-less vessel phantom for Doppler ultrasound studies. Rickey DW; Picot PA; Christopher DA; Fenster A Ultrasound Med Biol; 1995; 21(9):1163-76. PubMed ID: 8849831 [TBL] [Abstract][Full Text] [Related]
52. [A versatile phantom for hemodynamic measurements with ultrasound Doppler equipment]. von Boetticher H; Delebinski R; Risch U; Luska G Ultraschall Med; 1994 Oct; 15(5):264-8. PubMed ID: 7801099 [TBL] [Abstract][Full Text] [Related]
53. Walled vessel-mimicking phantom for ultrasound imaging using 3D printing with a water-soluble filament: design principle, fluid-structure interaction (FSI) simulation, and experimental validation. Dong J; Zhang Y; Lee WN Phys Med Biol; 2020 Apr; 65(8):085006. PubMed ID: 32106096 [TBL] [Abstract][Full Text] [Related]
54. Development and characterization of polyurethane-based tissue and blood mimicking materials for high intensity therapeutic ultrasound. Liu Y; Maruvada S J Acoust Soc Am; 2022 May; 151(5):3043. PubMed ID: 35649924 [TBL] [Abstract][Full Text] [Related]
55. Poly(vinyl alcohol) gel ultrasound phantom with durability and visibility of internal flow. Funamoto K; Yamashita O; Hayase T J Med Ultrason (2001); 2015 Jan; 42(1):17-23. PubMed ID: 26578486 [TBL] [Abstract][Full Text] [Related]
56. Spray-freeze-drying of nanosuspensions: the manufacture of insulin particles for needle-free ballistic powder delivery. Schiffter H; Condliffe J; Vonhoff S J R Soc Interface; 2010 Aug; 7 Suppl 4(Suppl 4):S483-500. PubMed ID: 20519207 [TBL] [Abstract][Full Text] [Related]
57. Impact of Yttrium-90 Microsphere Density, Flow Dynamics, and Administration Technique on Spatial Distribution: Analysis Using an In Vitro Model. Caine M; McCafferty MS; McGhee S; Garcia P; Mullett WM; Zhang X; Hill M; Dreher MR; Lewis AL J Vasc Interv Radiol; 2017 Feb; 28(2):260-268.e2. PubMed ID: 27641675 [TBL] [Abstract][Full Text] [Related]
58. A wall-less poly(vinyl alcohol) cryogel flow phantom with accurate scattering properties for transcranial Doppler ultrasound propagation channels analysis. Weir AJ; Sayer R; Cheng-Xiang Wang ; Parks S Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():2709-12. PubMed ID: 26736851 [TBL] [Abstract][Full Text] [Related]
59. Thermal characteristics of non-biological vessel phantoms for treatment of varicose veins using high-intensity focused ultrasound. Kim MS; Kim JY; Noh SC; Choi HH PLoS One; 2017; 12(4):e0174922. PubMed ID: 28384210 [TBL] [Abstract][Full Text] [Related]
60. Acoustical properties of selected tissue phantom materials for ultrasound imaging. Zell K; Sperl JI; Vogel MW; Niessner R; Haisch C Phys Med Biol; 2007 Oct; 52(20):N475-84. PubMed ID: 17921571 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]