These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30283636)

  • 1. Integrating viability and fecundity selection to illuminate the adaptive nature of genetic clines.
    Wadgymar SM; Daws SC; Anderson JT
    Evol Lett; 2017 May; 1(1):26-39. PubMed ID: 30283636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity in functional traits in the context of climate change: a case study of the subalpine forb Boechera stricta (Brassicaceae).
    Anderson JT; Gezon ZJ
    Glob Chang Biol; 2015 Apr; 21(4):1689-703. PubMed ID: 25470363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change shifts natural selection and the adaptive potential of the perennial forb Boechera stricta in the Rocky Mountains.
    Bemmels JB; Anderson JT
    Evolution; 2019 Nov; 73(11):2247-2262. PubMed ID: 31584183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water and nutrient availability exert selection on reproductive phenology.
    MacTavish R; Anderson JT
    Am J Bot; 2022 Nov; 109(11):1702-1716. PubMed ID: 36031862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting plant physiological adaptation to climate in the native and introduced range of Hypericum perforatum.
    Maron JL; Elmendorf SC; Vilà M
    Evolution; 2007 Aug; 61(8):1912-24. PubMed ID: 17683433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong selection genome-wide enhances fitness trade-offs across environments and episodes of selection.
    Anderson JT; Lee CR; Mitchell-Olds T
    Evolution; 2014 Jan; 68(1):16-31. PubMed ID: 24102539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microgeographic Patterns of Genetic Divergence and Adaptation across Environmental Gradients in Boechera stricta (Brassicaceae).
    Anderson JT; Perera N; Chowdhury B; Mitchell-Olds T
    Am Nat; 2015 Oct; 186 Suppl 1(0):S60-73. PubMed ID: 26656218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant responses to climate in the Cape Floristic Region of South Africa: evidence for adaptive differentiation in the Proteaceae.
    Carlson JE; Holsinger KE; Prunier R
    Evolution; 2011 Jan; 65(1):108-24. PubMed ID: 20840595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local adaptation to an altitudinal gradient: the interplay between mean phenotypic trait variation and phenotypic plasticity in
    Syrotchen JM; Ferris KG
    bioRxiv; 2024 Jan; ():. PubMed ID: 37577559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource availability alters fitness trade-offs: implications for evolution in stressful environments.
    MacTavish R; Anderson JT
    Am J Bot; 2020 Feb; 107(2):308-318. PubMed ID: 31943133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative genetic variance and multivariate clines in the Ivyleaf morning glory, Ipomoea hederacea.
    Stock AJ; Campitelli BE; Stinchcombe JR
    Philos Trans R Soc Lond B Biol Sci; 2014 Aug; 369(1649):20130259. PubMed ID: 25002704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub.
    Carlson JE; Adams CA; Holsinger KE
    Ann Bot; 2016 Jan; 117(1):195-207. PubMed ID: 26424782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic architecture and adaptation of flowering time among environments.
    Yan W; Wang B; Chan E; Mitchell-Olds T
    New Phytol; 2021 May; 230(3):1214-1227. PubMed ID: 33484593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate selection mediated by aridity predicts divergence of drought-resistant traits along natural aridity gradients of an invasive weed.
    Carvalho C; Davis R; Connallon T; Gleadow RM; Moore JL; Uesugi A
    New Phytol; 2022 May; 234(3):1088-1100. PubMed ID: 35118675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low but significant evolutionary potential for growth, phenology and reproduction traits in European beech.
    Westergren M; Archambeau J; Bajc M; Damjanić R; Theraroz A; Kraigher H; Oddou-Muratorio S; González-Martínez SC
    Mol Ecol; 2023 Nov; ():. PubMed ID: 37962106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explaining the apparent paradox of persistent selection for early flowering.
    Austen EJ; Rowe L; Stinchcombe JR; Forrest JRK
    New Phytol; 2017 Aug; 215(3):929-934. PubMed ID: 28418161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-scale genetically based differentiation of life-history traits in the perennial shrub Lupinus arboreus.
    Kittelson PM; Maron JL
    Evolution; 2001 Dec; 55(12):2429-38. PubMed ID: 11831659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Populations Are Differentiated in Biological Rhythms without Explicit Elevational Clines in the Plant
    Leinonen PH; Salmela MJ; Greenham K; McClung CR; Willis JH
    J Biol Rhythms; 2020 Oct; 35(5):452-464. PubMed ID: 32628567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life-history QTLS and natural selection on flowering time in Boechera stricta, a perennial relative of Arabidopsis.
    Anderson JT; Lee CR; Mitchell-Olds T
    Evolution; 2011 Mar; 65(3):771-87. PubMed ID: 21083662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Costs of reproduction under experimental climate change across elevations in the perennial forb
    Hamann E; Wadgymar SM; Anderson JT
    Proc Biol Sci; 2021 Apr; 288(1948):20203134. PubMed ID: 33849323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.