These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 30283894)
1. An Ectopic Imaging Window for Intravital Imaging of Engineered Bone Tissue. Stiers PJ; van Gastel N; Moermans K; Stockmans I; Carmeliet G JBMR Plus; 2018 Mar; 2(2):92-102. PubMed ID: 30283894 [TBL] [Abstract][Full Text] [Related]
2. Intravital Imaging to Understand Spatiotemporal Regulation of Osteogenesis and Angiogenesis in Cranial Defect Repair and Regeneration. Zhang X Methods Mol Biol; 2018; 1842():229-239. PubMed ID: 30196414 [TBL] [Abstract][Full Text] [Related]
3. Actually Seeing What Is Going on - Intravital Microscopy in Tissue Engineering. Vaghela R; Arkudas A; Horch RE; Hessenauer M Front Bioeng Biotechnol; 2021; 9():627462. PubMed ID: 33681162 [TBL] [Abstract][Full Text] [Related]
4. A novel model for ectopic, chronic, intravital multiphoton imaging of bone marrow vasculature and architecture in split femurs. Bălan M; Kiefer F Intravital; 2015; 4(2):e1066949. PubMed ID: 28243515 [TBL] [Abstract][Full Text] [Related]
5. Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair. Li J; Jahr H; Zheng W; Ren PG J Vis Exp; 2017 Sep; (127):. PubMed ID: 28930985 [TBL] [Abstract][Full Text] [Related]
7. Development of in vivo muCT evaluation of neovascularisation in tissue engineered bone constructs. Bolland BJRF; Kanczler JM; Dunlop DG; Oreffo ROC Bone; 2008 Jul; 43(1):195-202. PubMed ID: 18424249 [TBL] [Abstract][Full Text] [Related]
8. Intravital Imaging for Tracking of Angiogenesis and Cellular Events Around Surgical Bone Implants. Khosravi N; Mendes VC; Nirmal G; Majeed S; DaCosta RS; Davies JE Tissue Eng Part C Methods; 2018 Nov; 24(11):617-627. PubMed ID: 30280999 [TBL] [Abstract][Full Text] [Related]
9. Contrast enhanced computed tomography for real-time quantification of glycosaminoglycans in cartilage tissue engineered constructs. Garcia JP; Longoni A; Gawlitta D; J W P Rosenberg A; Grinstaff MW; Töyräs J; Weinans H; Creemers LB; Pouran B Acta Biomater; 2019 Dec; 100():202-212. PubMed ID: 31580960 [TBL] [Abstract][Full Text] [Related]
10. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916 [TBL] [Abstract][Full Text] [Related]
11. A Novel Window into Angiogenesis-Intravital Microscopy in the AV-Loop-Model. Vaghela R; Arkudas A; Gage D; Körner C; von Hörsten S; Salehi S; Horch RE; Hessenauer M Cells; 2023 Jan; 12(2):. PubMed ID: 36672196 [TBL] [Abstract][Full Text] [Related]
12. Viable osteogenic cells are obligatory for tissue-engineered ectopic bone formation in goats. Kruyt MC; de Bruijn JD; Wilson CE; Oner FC; van Blitterswijk CA; Verbout AJ; Dhert WJ Tissue Eng; 2003 Apr; 9(2):327-36. PubMed ID: 12740095 [TBL] [Abstract][Full Text] [Related]
13. Procedures and applications of long-term intravital microscopy. Prunier C; Chen N; Ritsma L; Vrisekoop N Methods; 2017 Sep; 128():52-64. PubMed ID: 28669866 [TBL] [Abstract][Full Text] [Related]
14. Deciphering the combined effect of bone morphogenetic protein 6 and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs. Ji W; Kerckhofs G; Geeroms C; Marechal M; Geris L; Luyten FP Acta Biomater; 2018 Oct; 80():97-107. PubMed ID: 30267882 [TBL] [Abstract][Full Text] [Related]
15. Multimodal-3D imaging based on μMRI and μCT techniques bridges the gap with histology in visualization of the bone regeneration process. Sinibaldi R; Conti A; Sinjari B; Spadone S; Pecci R; Palombo M; Komlev VS; Ortore MG; Tromba G; Capuani S; Guidotti R; De Luca F; Caputi S; Traini T; Della Penna S J Tissue Eng Regen Med; 2018 Mar; 12(3):750-761. PubMed ID: 28593731 [TBL] [Abstract][Full Text] [Related]
16. Osteogenesis and angiogenesis: the potential for engineering bone. Kanczler JM; Oreffo RO Eur Cell Mater; 2008 May; 15():100-14. PubMed ID: 18454418 [TBL] [Abstract][Full Text] [Related]
17. Two-Photon Intravital Microscopy Animal Preparation Protocol to Study Cellular Dynamics in Pathogenesis. van Grinsven E; Prunier C; Vrisekoop N; Ritsma L Methods Mol Biol; 2017; 1563():51-71. PubMed ID: 28324601 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of the Oxygen Sensor PHD2 Enhances Tissue-Engineered Endochondral Bone Formation. Stiers PJ; Stegen S; van Gastel N; Van Looveren R; Torrekens S; Carmeliet G J Bone Miner Res; 2019 Feb; 34(2):333-348. PubMed ID: 30452097 [TBL] [Abstract][Full Text] [Related]
19. [The method of accelerating osteanagenesis and revascularization of tissue engineered bone in big animal in vivo]. Chen B; Pei GX; Wang K; Jin D; Wei KH; Ren GH Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2003 Feb; 25(1):26-31. PubMed ID: 12905602 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence molecular tomography enables in vivo visualization and quantification of nonunion fracture repair induced by genetically engineered mesenchymal stem cells. Zilberman Y; Kallai I; Gafni Y; Pelled G; Kossodo S; Yared W; Gazit D J Orthop Res; 2008 Apr; 26(4):522-30. PubMed ID: 17985393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]