These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30283894)

  • 21. Limbostomy: Longitudinal Intravital Microendoscopy in Murine Osteotomies.
    Stefanowski J; Fiedler AF; Köhler M; Günther R; Liublin W; Tschaikner M; Rauch A; Reismann D; Matthys R; Nützi R; Bixel MG; Adams RH; Niesner RA; Duda GN; Hauser AE
    Cytometry A; 2020 May; 97(5):483-495. PubMed ID: 32196971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multi-modal imaging for assessment of tissue-engineered bone in a critical-sized calvarial defect mouse model.
    Wartella KA; Khalilzad-Sharghi V; Kelso ML; Kovar JL; Kaplan DL; Xu H; Othman SF
    J Tissue Eng Regen Med; 2017 Jun; 11(6):1732-1740. PubMed ID: 26174196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stabilized Longitudinal In Vivo Cellular-Level Visualization of the Pancreas in a Murine Model with a Pancreatic Intravital Imaging Window.
    Park I; Kim P
    J Vis Exp; 2021 May; (171):. PubMed ID: 34028450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ectopic study of tissue-engineered bone with hBMP-4 gene modified bone marrow stromal cells in rabbits.
    Jiang XQ; Chen JG; Gittens S; Chen CJ; Zhang XL; Zhang ZY
    Chin Med J (Engl); 2005 Feb; 118(4):281-8. PubMed ID: 15740665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice.
    Hu JZ; Zhang ZY; Zhao J; Zhang XL; Liu GT; Jiang XQ
    Chin Med J (Engl); 2009 Apr; 122(8):972-9. PubMed ID: 19493425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of microvasculature in normal and perturbed bone healing as revealed by intravital microscopy.
    Winet H
    Bone; 1996 Jul; 19(1 Suppl):39S-57S. PubMed ID: 8830997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient in vivo bone formation by BMP-2 engineered human mesenchymal stem cells encapsulated in a projection stereolithographically fabricated hydrogel scaffold.
    Lin H; Tang Y; Lozito TP; Oyster N; Wang B; Tuan RS
    Stem Cell Res Ther; 2019 Aug; 10(1):254. PubMed ID: 31412905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Longitudinal Intravital Microscopy Using a Mammary Imaging Window with Replaceable Lid.
    Mourao L; Ciwinska M; van Rheenen J; Scheele CLGJ
    J Vis Exp; 2022 Jan; (179):. PubMed ID: 35129183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects.
    Byers BA; Guldberg RE; Hutmacher DW; García AJ
    J Biomed Mater Res A; 2006 Mar; 76(3):646-55. PubMed ID: 16287095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intravital imaging of orthotopic and ectopic bone.
    Hashimoto K; Kaito T; Kikuta J; Ishii M
    Inflamm Regen; 2020 Nov; 40(1):26. PubMed ID: 33292699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-Resolution X-Ray Techniques as New Tool to Investigate the 3D Vascularization of Engineered-Bone Tissue.
    Bukreeva I; Fratini M; Campi G; Pelliccia D; Spanò R; Tromba G; Brun F; Burghammer M; Grilli M; Cancedda R; Cedola A; Mastrogiacomo M
    Front Bioeng Biotechnol; 2015; 3():133. PubMed ID: 26442248
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A cerebellar window for intravital imaging of normal and disease states in mice.
    Askoxylakis V; Badeaux M; Roberge S; Batista A; Kirkpatrick N; Snuderl M; Amoozgar Z; Seano G; Ferraro GB; Chatterjee S; Xu L; Fukumura D; Duda DG; Jain RK
    Nat Protoc; 2017 Nov; 12(11):2251-2262. PubMed ID: 28981123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo bioluminescence imaging study to monitor ectopic bone formation by luciferase gene marked mesenchymal stem cells.
    Olivo C; Alblas J; Verweij V; Van Zonneveld AJ; Dhert WJ; Martens AC
    J Orthop Res; 2008 Jul; 26(7):901-9. PubMed ID: 18271011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing.
    Pang Y; Tsigkou O; Spencer JA; Lin CP; Neville C; Grottkau B
    Tissue Eng Part C Methods; 2015 Oct; 21(10):1025-31. PubMed ID: 25962617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The combinatory effect of sinusoidal electromagnetic field and VEGF promotes osteogenesis and angiogenesis of mesenchymal stem cell-laden PCL/HA implants in a rat subcritical cranial defect.
    Chen J; Tu C; Tang X; Li H; Yan J; Ma Y; Wu H; Liu C
    Stem Cell Res Ther; 2019 Dec; 10(1):379. PubMed ID: 31842985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes.
    Bardsley K; Kwarciak A; Freeman C; Brook I; Hatton P; Crawford A
    Biomaterials; 2017 Jan; 112():313-323. PubMed ID: 27770634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [A research on ectopic osteogenesis and vascularization of tissue engineered bone promoted by 1,25-(OH)2D3].
    Li T; Wang J; Yang H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Oct; 21(10):1142-6. PubMed ID: 17990787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peri-Implant Bone Regeneration Using rhPDGF-BB, BMSCs, and β-TCP in a Canine Model.
    Xu L; Zhang W; Lv K; Yu W; Jiang X; Zhang F
    Clin Implant Dent Relat Res; 2016 Apr; 18(2):241-52. PubMed ID: 25644231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.