BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30283942)

  • 1. High efficiency MAPbI
    Yuan S; Wang J; Yang K; Wang P; Zhang X; Zhan Y; Zheng L
    Nanoscale; 2018 Oct; 10(40):18909-18914. PubMed ID: 30283942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfacial Sulfur Functionalization Anchoring SnO
    Wang Z; Kamarudin MA; Huey NC; Yang F; Pandey M; Kapil G; Ma T; Hayase S
    ChemSusChem; 2018 Nov; 11(22):3941-3948. PubMed ID: 30225914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving High Open-Circuit Voltage on Planar Perovskite Solar Cells via Chlorine-Doped Tin Oxide Electron Transport Layers.
    Liang J; Chen Z; Yang G; Wang H; Ye F; Tao C; Fang G
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23152-23159. PubMed ID: 31184462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Rutile TiO
    Wang Y; Wan J; Ding J; Hu JS; Wang D
    Angew Chem Int Ed Engl; 2019 Jul; 58(28):9414-9418. PubMed ID: 31041835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial Passivation of the p-Doped Hole-Transporting Layer Using General Insulating Polymers for High-Performance Inverted Perovskite Solar Cells.
    Zhang F; Song J; Hu R; Xiang Y; He J; Hao Y; Lian J; Zhang B; Zeng P; Qu J
    Small; 2018 May; 14(19):e1704007. PubMed ID: 29638030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. F-doping-Enhanced Carrier Transport in the SnO
    Luo T; Ye G; Chen X; Wu H; Zhang W; Chang H
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42093-42101. PubMed ID: 36093928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells.
    Li M; Yan X; Kang Z; Huan Y; Li Y; Zhang R; Zhang Y
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18787-18795. PubMed ID: 29749222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface engineering and defect passivation for enhanced hole extraction, ion migration, and optimal charge dynamics in both lead-based and lead-free perovskite solar cells.
    Noman M; Khan AHH; Jan ST
    Sci Rep; 2024 Mar; 14(1):5449. PubMed ID: 38443686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.
    Li H; Tao L; Huang F; Sun Q; Zhao X; Han J; Shen Y; Wang M
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38967-38976. PubMed ID: 29028304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(4-Vinylpyridine)-Based Interfacial Passivation to Enhance Voltage and Moisture Stability of Lead Halide Perovskite Solar Cells.
    Chaudhary B; Kulkarni A; Jena AK; Ikegami M; Udagawa Y; Kunugita H; Ema K; Miyasaka T
    ChemSusChem; 2017 Jun; 10(11):2473-2479. PubMed ID: 28371487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Performance of Perovskite Solar Cells by Using Ultrathin BaTiO
    Qin J; Zhang Z; Shi W; Liu Y; Gao H; Mao Y
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36067-36074. PubMed ID: 30272439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 40.1% Record Low-Light Solar-Cell Efficiency by Holistic Trap-Passivation using Micrometer-Thick Perovskite Film.
    He X; Chen J; Ren X; Zhang L; Liu Y; Feng J; Fang J; Zhao K; Liu SF
    Adv Mater; 2021 Jul; 33(27):e2100770. PubMed ID: 34057256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Functional Additive to Simultaneously Modify the Interface and Grain Boundary for Highly Efficient and Hysteresis-Free Perovskite Solar Cells.
    Rao Y; Li Z; Liu D; Chen C; Wang X; Cui G; Pang S
    ACS Appl Mater Interfaces; 2021 May; 13(17):20043-20050. PubMed ID: 33896179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells.
    Li Y; Zhao Y; Chen Q; Yang YM; Liu Y; Hong Z; Liu Z; Hsieh YT; Meng L; Li Y; Yang Y
    J Am Chem Soc; 2015 Dec; 137(49):15540-7. PubMed ID: 26592525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect Regulation of Efficient Dion-Jacobson Quasi-2D Perovskite Solar Cells via a Polyaspartic Acid Interlayer.
    Zhai Z; Chen J; Liu Q; Jiang S; Li Y
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):38068-38079. PubMed ID: 37503748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO
    Ke W; Stoumpos CC; Logsdon JL; Wasielewski MR; Yan Y; Fang G; Kanatzidis MG
    J Am Chem Soc; 2016 Nov; 138(45):14998-15003. PubMed ID: 27776416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Mechanism between Antisolvent Dripping and Additive Doping Strategies on the Passivation Effects in Perovskite Solar Cells.
    Long J; Sheng W; Dai R; Huang Z; Yang J; Zhang J; Li X; Tan L; Chen Y
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56151-56160. PubMed ID: 33263982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronous Interface Modification and Bulk Passivation via a One-Step Cesium Bromide Diffusion Process for Highly Efficient Perovskite Solar Cells.
    Pang S; Zhang C; Dong H; Zhang Z; Chen D; Zhu W; Chang J; Lin Z; Zhang J; Hao Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10110-10119. PubMed ID: 33606489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Formation of 2D-3D Heterojunctions on Perovskite Thin Film Surfaces for Efficient Solar Cells.
    He Q; Worku M; Xu L; Zhou C; Lin H; Robb AJ; Hanson K; Xin Y; Ma B
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1159-1168. PubMed ID: 31825589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Dopant Engineering in Hole Transport Layers for Efficient Perovskite Solar Cells: Insight into the Interfacial Recombination.
    Zhang J; Daniel Q; Zhang T; Wen X; Xu B; Sun L; Bach U; Cheng YB
    ACS Nano; 2018 Oct; 12(10):10452-10462. PubMed ID: 30207694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.