BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3028396)

  • 21. [Nah-genes of Pseudomonas putida: molecular genetic analysis of the plasmid pBS286].
    Tsoĭ TV; Kosheleva IA; Boronin AM
    Genetika; 1986 Nov; 22(11):2702-12. PubMed ID: 3026897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organization and evolution of naphthalene catabolic pathways: sequence of the DNA encoding 2-hydroxychromene-2-carboxylate isomerase and trans-o-hydroxybenzylidenepyruvate hydratase-aldolase from the NAH7 plasmid.
    Eaton RW
    J Bacteriol; 1994 Dec; 176(24):7757-62. PubMed ID: 8002605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Comparative analysis of the organization of the NPL-1 plasmid controlling naphthalene oxidation in Pseudomonas putida and its derivatives].
    Kosheleva IA; Tsoĭ TV; Kulakova AN; Boronin AM
    Genetika; 1986 Oct; 22(10):2389-97. PubMed ID: 3025060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomic and functional analysis of the IncP-9 naphthalene-catabolic plasmid NAH7 and its transposon Tn4655 suggests catabolic gene spread by a tyrosine recombinase.
    Sota M; Yano H; Ono A; Miyazaki R; Ishii H; Genka H; Top EM; Tsuda M
    J Bacteriol; 2006 Jun; 188(11):4057-67. PubMed ID: 16707697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Regulation of the synthesis of the key enzymes for naphthalene catabolism in Pseudomonas putida and Pseudomonas fluorescens carrying the biodegradation plasmids NAH, pBS3, pBS2 and NPL-1].
    Starovoĭtov II
    Mikrobiologiia; 1985; 54(5):755-62. PubMed ID: 3937034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of substituted naphthalene dihydrodiols by engineered Escherichia coli containing the cloned naphthalene 1,2-dioxygenase gene from Pseudomonas fluorescens N3.
    Gennaro PD; Galli E; Albini G; Pelizzoni F; Sello G; Bestetti G
    Res Microbiol; 1997 May; 148(4):355-64. PubMed ID: 9765814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of altered plasmids in mutant strains of Pseudomonas putida NCIB 9816.
    Serdar CM; Gibson DT
    Biochem Biophys Res Commun; 1989 Oct; 164(2):764-71. PubMed ID: 2684156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate.
    Monticello DJ; Bakker D; Schell M; Finnerty WR
    Appl Environ Microbiol; 1985 Apr; 49(4):761-4. PubMed ID: 2988437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SAL-TOL in vivo recombinant plasmid pKF439.
    Furukawa K; Miyazaki T; Tomizuka N
    J Bacteriol; 1985 Jun; 162(3):1325-8. PubMed ID: 2987190
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Genetic control of naphthalene biodegradation by a strain of Pseudomonas sp. 8909N].
    Kosheleva IA; Sokolov SL; Balashova NV; Filonov AE; Meleshko EI; Gaiazov RR; Boronin AM
    Genetika; 1997 Jun; 33(6):762-8. PubMed ID: 9289413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for plasmid-mediated chemotaxis of Pseudomonas putida towards naphthalene and salicylate.
    Samanta SK; Jain RK
    Can J Microbiol; 2000 Jan; 46(1):1-6. PubMed ID: 10696467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Effect of transposons on expression of genes for naphthalene biodegradation in Pseudomonas putida BS202(NPL-1) and derivative strains].
    Sokolov SL; Kosheleva IA; Filonov AE; Boronin AM
    Mikrobiologiia; 2005; 74(1):79-86. PubMed ID: 15835782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Incompatibility group P-7 plasmids responsible for biodegradation of naphthalene and salicylate in fluorescent pseudomonads].
    Izmalkova TIu; Sazonova OI; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(3):342-8. PubMed ID: 16119847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Derivation of the Tn5-induced mutants of the plasmid-containing naphthalene- and salicylate-degrading strains of Pseudomonas putida BS394(pBS216) and the inhibition of their growth on different substrates by low temperatures].
    Grishchenkov VG; Radzion AA; Medvedev PA; Balina MI; Boronin AM
    Mikrobiologiia; 2004; 73(3):430-2. PubMed ID: 15315239
    [No Abstract]   [Full Text] [Related]  

  • 35. Identification of nah-1 genes of the Pseudomonas putida naphthalene-degrading NPL-41 plasmid operon.
    Serebriiskaya TS; Lenets AA; Goldenkova IV; Kobets NS; Piruzian ES
    Mol Gen Mikrobiol Virusol; 1999; (4):33-6. PubMed ID: 10621937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of pathogenicity genes of Pseudomonas syringae pv. tabaci.
    Salch YP; Shaw PD
    J Bacteriol; 1988 Jun; 170(6):2584-91. PubMed ID: 2836363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutzeri AN10.
    Bosch R; García-Valdés E; Moore ER
    Gene; 2000 Mar; 245(1):65-74. PubMed ID: 10713446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of 2-hydroxybenzoate on the maintenance of naphthalene-degrading pseudomonads in seeded and unseeded soil.
    Ogunseitan OA; Delgado IL; Tsai YL; Olson BH
    Appl Environ Microbiol; 1991 Oct; 57(10):2873-9. PubMed ID: 1746947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo interactions of the NahR transcriptional activator with its target sequences. Inducer-mediated changes resulting in transcription activation.
    Huang JZ; Schell MA
    J Biol Chem; 1991 Jun; 266(17):10830-8. PubMed ID: 2040603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches.
    Ono A; Miyazaki R; Sota M; Ohtsubo Y; Nagata Y; Tsuda M
    Appl Microbiol Biotechnol; 2007 Feb; 74(2):501-10. PubMed ID: 17096121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.