These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30283977)

  • 1. Dynamics and mechanisms of posterior axis elongation in the vertebrate embryo.
    Bénazéraf B
    Cell Mol Life Sci; 2019 Jan; 76(1):89-98. PubMed ID: 30283977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-scale quantification of tissue behavior during amniote embryo axis elongation.
    Bénazéraf B; Beaupeux M; Tchernookov M; Wallingford A; Salisbury T; Shirtz A; Shirtz A; Huss D; Pourquié O; François P; Lansford R
    Development; 2017 Dec; 144(23):4462-4472. PubMed ID: 28835474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics of Anteroposterior Axis Formation in Vertebrates.
    Mongera A; Michaut A; Guillot C; Xiong F; Pourquié O
    Annu Rev Cell Dev Biol; 2019 Oct; 35():259-283. PubMed ID: 31412208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A non directional cell migration gradient in the presomitic mesoderm contributes to axis elongation in chicken embryos].
    Bénazéraf B; François P; Denans N; Little CD; Pourquié O
    Biol Aujourdhui; 2011; 205(2):95-103. PubMed ID: 21831340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and segmentation of the vertebrate body axis.
    Bénazéraf B; Pourquié O
    Annu Rev Cell Dev Biol; 2013; 29():1-26. PubMed ID: 23808844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Posterior Neural Plate-Derived Presomitic Mesoderm (PSM) in Trunk and Tail Muscle Formation and Axis Elongation.
    Stepien BK; Pawolski V; Wagner MC; Kurth T; Schmidt MHH; Epperlein HH
    Cells; 2023 May; 12(9):. PubMed ID: 37174713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shaping the vertebrate body plan by polarized embryonic cell movements.
    Keller R
    Science; 2002 Dec; 298(5600):1950-4. PubMed ID: 12471247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergent morphogenesis: elastic mechanics of a self-deforming tissue.
    Davidson LA; Joshi SD; Kim HY; von Dassow M; Zhang L; Zhou J
    J Biomech; 2010 Jan; 43(1):63-70. PubMed ID: 19815213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The migration of paraxial and lateral plate mesoderm cells emerging from the late primitive streak is controlled by different Wnt signals.
    Sweetman D; Wagstaff L; Cooper O; Weijer C; Münsterberg A
    BMC Dev Biol; 2008 Jun; 8():63. PubMed ID: 18541012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Region-specific regulation of posterior axial elongation during vertebrate embryogenesis.
    Neijts R; Simmini S; Giuliani F; van Rooijen C; Deschamps J
    Dev Dyn; 2014 Jan; 243(1):88-98. PubMed ID: 23913366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors that coordinate mesoderm specification from neuromesodermal progenitors with segmentation during vertebrate axial extension.
    Martin BL
    Semin Cell Dev Biol; 2016 Jan; 49():59-67. PubMed ID: 26658097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Control of the positioning of the vertebrate limb axes during development].
    Catala M
    Morphologie; 2000 Jun; 84(265):17-23. PubMed ID: 11048294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A random cell motility gradient downstream of FGF controls elongation of an amniote embryo.
    Bénazéraf B; Francois P; Baker RE; Denans N; Little CD; Pourquié O
    Nature; 2010 Jul; 466(7303):248-52. PubMed ID: 20613841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromesodermal Progenitors: A Basis for Robust Axial Patterning in Development and Evolution.
    Sambasivan R; Steventon B
    Front Cell Dev Biol; 2020; 8():607516. PubMed ID: 33520989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluid-to-solid jamming transition underlies vertebrate body axis elongation.
    Mongera A; Rowghanian P; Gustafson HJ; Shelton E; Kealhofer DA; Carn EK; Serwane F; Lucio AA; Giammona J; Campàs O
    Nature; 2018 Sep; 561(7723):401-405. PubMed ID: 30185907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The zebrafish presomitic mesoderm elongates through compaction-extension.
    Thomson L; Muresan L; Steventon B
    Cells Dev; 2021 Dec; 168():203748. PubMed ID: 34597846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenopus Dishevelled signaling regulates both neural and mesodermal convergent extension: parallel forces elongating the body axis.
    Wallingford JB; Harland RM
    Development; 2001 Jul; 128(13):2581-92. PubMed ID: 11493574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Coupling Coordinates the Co-elongation of Axial and Paraxial Tissues in Avian Embryos.
    Xiong F; Ma W; Bénazéraf B; Mahadevan L; Pourquié O
    Dev Cell; 2020 Nov; 55(3):354-366.e5. PubMed ID: 32918876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stem cell growth becomes predominant while neural plate progenitor pool decreases during spinal cord elongation.
    Roszko I; Faure P; Mathis L
    Dev Biol; 2007 Apr; 304(1):232-45. PubMed ID: 17258701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuromesodermal specification during head-to-tail body axis formation.
    Martins-Costa C; Wilson V; Binagui-Casas A
    Curr Top Dev Biol; 2024; 159():232-271. PubMed ID: 38729677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.