These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30284110)

  • 21. Terahertz and Infrared Plasmon Polaritons in PtTe
    Macis S; D'Arco A; Mosesso L; Paolozzi MC; Tofani S; Tomarchio L; Tummala PP; Ghomi S; Stopponi V; Bonaventura E; Massetti C; Codegoni D; Serafini A; Targa P; Zacchigna M; Lamperti A; Martella C; Molle A; Lupi S
    Adv Mater; 2024 Jul; 36(29):e2400554. PubMed ID: 38733453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-confined Propagating Exciton-Plasmon Polaritons Enabled by Cavity-Free Strong Coupling: Beating Plasmonic Trade-Offs.
    Wang Y; Luo A; Zhu C; Li Z; Wu X
    Nanoscale Res Lett; 2022 Nov; 17(1):109. PubMed ID: 36399213
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves.
    Zhou YJ; Yang BJ
    Appl Opt; 2015 May; 54(14):4529-33. PubMed ID: 25967512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid nanowedge plasmonic waveguide for low loss propagation with ultra-deep-subwavelength mode confinement.
    Ma Y; Farrell G; Semenova Y; Wu Q
    Opt Lett; 2014 Feb; 39(4):973-6. PubMed ID: 24562255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Holographic Nano-Imaging of Terahertz Dirac Plasmon Polaritons in Topological Insulator Antenna Resonators.
    Pistore V; Viti L; Schiattarella C; Wang Z; Law S; Mitrofanov O; Vitiello MS
    Small; 2024 May; 20(22):e2308116. PubMed ID: 38152928
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable plasmonic filter based on parallel bulk Dirac semimetals at terahertz frequencies.
    Zhuang H; Liu C; Li F; Zhuang J; Kong F; Li K
    Appl Opt; 2021 May; 60(13):3634-3640. PubMed ID: 33983295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colossal Terahertz Photoresponse at Room Temperature: A Signature of Type-II Dirac Fermiology.
    Xu H; Fei F; Chen Z; Bo X; Sun Z; Wan X; Han L; Wang L; Zhang K; Zhang J; Chen G; Liu C; Guo W; Yang L; Wei D; Song F; Chen X; Lu W
    ACS Nano; 2021 Mar; 15(3):5138-5146. PubMed ID: 33620212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale.
    Bian Y; Gong Q
    Nanoscale; 2015 Mar; 7(10):4415-22. PubMed ID: 25648863
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spoof surface plasmon polaritons based on ultrathin corrugated metallic grooves at terahertz frequency.
    Liu Y; Yan J; Shao Y; Pan J; Zhang C; Hao Y; Han G
    Appl Opt; 2016 Mar; 55(7):1720-4. PubMed ID: 26974635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large-range, continuously tunable perfect absorbers based on Dirac semimetals.
    Shi X; Fang P; Zhai X; Li H; Wang L
    Opt Express; 2020 Mar; 28(5):7350-7359. PubMed ID: 32225965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broad/narrowband switchable terahertz absorber based on Dirac semimetal and strontium titanate for temperature sensing.
    Zhang YG; Liu W; Yao HY; Liang LJ; Yan X; Zong MJ; Gao S; Huang CC; Qiu F; Feng ZW; Zhang R; Hu XF; Li ZH; Wang ZQ
    Appl Opt; 2024 Feb; 63(5):1306-1312. PubMed ID: 38437310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale.
    Zhang B; Bian Y; Ren L; Guo F; Tang SY; Mao Z; Liu X; Sun J; Gong J; Guo X; Huang TJ
    Sci Rep; 2017 Jan; 7():40479. PubMed ID: 28091583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultralow-Loss CMOS Copper Plasmonic Waveguides.
    Fedyanin DY; Yakubovsky DI; Kirtaev RV; Volkov VS
    Nano Lett; 2016 Jan; 16(1):362-6. PubMed ID: 26654281
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film.
    Chen L; Zhang T; Li X; Huang W
    Opt Express; 2012 Aug; 20(18):20535-44. PubMed ID: 23037100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS.
    Liang Y; Yu H; Wen J; Apriyana AA; Li N; Luo Y; Sun L
    Sci Rep; 2016 Jul; 6():30063. PubMed ID: 27444782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility study of nanoscaled optical waveguide based on near-resonant surface plasmon polariton.
    Yan M; Thylén L; Qiu M; Parekh D
    Opt Express; 2008 May; 16(10):7499-507. PubMed ID: 18545455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-performance dual-tunable terahertz absorber based on strontium titanate and bulk Dirac semimetal for temperature sensing and switching function.
    Zhang YG; Feng ZW; Liang LJ; Yao HY; Wang YR; Xu L; Yan X; Liu W
    Appl Opt; 2023 Jul; 62(21):5822-5829. PubMed ID: 37707202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasmall and tunable TeraHertz surface plasmon cavities at the ultimate plasmonic limit.
    Aupiais I; Grasset R; Guo T; Daineka D; Briatico J; Houver S; Perfetti L; Hugonin JP; Greffet JJ; Laplace Y
    Nat Commun; 2023 Nov; 14(1):7645. PubMed ID: 37996404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-Low-Loss Mid-Infrared Plasmonic Waveguides Based on Multilayer Graphene Metamaterials.
    Huang CC; Chang RJ; Cheng CW
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bi-tunable terahertz absorber based on strontium titanate and Dirac semimetal.
    Xiong H; Peng Y; Yang F; Yang Z; Wang Z
    Opt Express; 2020 May; 28(10):15744-15752. PubMed ID: 32403595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.