These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
774 related articles for article (PubMed ID: 30284160)
1. Phytohormones enhanced drought tolerance in plants: a coping strategy. Ullah A; Manghwar H; Shaban M; Khan AH; Akbar A; Ali U; Ali E; Fahad S Environ Sci Pollut Res Int; 2018 Nov; 25(33):33103-33118. PubMed ID: 30284160 [TBL] [Abstract][Full Text] [Related]
2. Correlations between Phytohormones and Drought Tolerance in Selected Pavlović I; Petřík I; Tarkowská D; Lepeduš H; Vujčić Bok V; Radić Brkanac S; Novák O; Salopek-Sondi B Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30241414 [TBL] [Abstract][Full Text] [Related]
4. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Salvi P; Manna M; Kaur H; Thakur T; Gandass N; Bhatt D; Muthamilarasan M Plant Cell Rep; 2021 Aug; 40(8):1305-1329. PubMed ID: 33751168 [TBL] [Abstract][Full Text] [Related]
5. Identification and Analysis of Genes Involved in Auxin, Abscisic Acid, Gibberellin, and Brassinosteroid Metabolisms Under Drought Stress in Tender Shoots of Tea Plants. Li H; Teng RM; Liu JX; Yang RY; Yang YZ; Lin SJ; Han MH; Liu JY; Zhuang J DNA Cell Biol; 2019 Nov; 38(11):1292-1302. PubMed ID: 31560570 [TBL] [Abstract][Full Text] [Related]
6. A Functional Genomic Perspective on Drought Signalling and its Crosstalk with Phytohormone-mediated Signalling Pathways in Plants. Tiwari S; Lata C; Chauhan PS; Prasad V; Prasad M Curr Genomics; 2017 Dec; 18(6):469-482. PubMed ID: 29204077 [TBL] [Abstract][Full Text] [Related]
7. Physiological response to drought in radiata pine: phytohormone implication at leaf level. De Diego N; Pérez-Alfocea F; Cantero E; Lacuesta M; Moncaleán P Tree Physiol; 2012 Apr; 32(4):435-49. PubMed ID: 22499594 [TBL] [Abstract][Full Text] [Related]
8. Indole-3-acetic acid improves drought tolerance of white clover via activating auxin, abscisic acid and jasmonic acid related genes and inhibiting senescence genes. Zhang Y; Li Y; Hassan MJ; Li Z; Peng Y BMC Plant Biol; 2020 Apr; 20(1):150. PubMed ID: 32268884 [TBL] [Abstract][Full Text] [Related]
9. Phytohormonal modulation of the drought stress in soybean: outlook, research progress, and cross-talk. Shaffique S; Hussain S; Kang SM; Imran M; Injamum-Ul-Hoque M; Khan MA; Lee IJ Front Plant Sci; 2023; 14():1237295. PubMed ID: 37929163 [TBL] [Abstract][Full Text] [Related]
10. Insights into the plant responses to drought and decoding the potential of root associated microbiome for inducing drought tolerance. Mathur P; Roy S Physiol Plant; 2021 Jun; 172(2):1016-1029. PubMed ID: 33491182 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of Drought-Stress Tolerance of Kim YN; Khan MA; Kang SM; Hamayun M; Lee IJ J Microbiol Biotechnol; 2020 Oct; 30(10):1500-1509. PubMed ID: 32807757 [TBL] [Abstract][Full Text] [Related]
12. Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose. Asaf S; Khan AL; Khan MA; Imran QM; Yun BW; Lee IJ Microbiol Res; 2017 Dec; 205():135-145. PubMed ID: 28942839 [TBL] [Abstract][Full Text] [Related]
13. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions. de Ollas C; Hernando B; Arbona V; Gómez-Cadenas A Physiol Plant; 2013 Mar; 147(3):296-306. PubMed ID: 22671923 [TBL] [Abstract][Full Text] [Related]
14. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. Mubarik MS; Khan SH; Sajjad M; Raza A; Hafeez MB; Yasmeen T; Rizwan M; Ali S; Arif MS Physiol Plant; 2021 Jun; 172(2):1269-1290. PubMed ID: 33421147 [TBL] [Abstract][Full Text] [Related]
15. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Fahad S; Hussain S; Bano A; Saud S; Hassan S; Shan D; Khan FA; Khan F; Chen Y; Wu C; Tabassum MA; Chun MX; Afzal M; Jan A; Jan MT; Huang J Environ Sci Pollut Res Int; 2015 Apr; 22(7):4907-21. PubMed ID: 25369916 [TBL] [Abstract][Full Text] [Related]
16. Abscisic acid in plants under abiotic stress: crosstalk with major phytohormones. Singh A; Roychoudhury A Plant Cell Rep; 2023 Jun; 42(6):961-974. PubMed ID: 37079058 [TBL] [Abstract][Full Text] [Related]
17. Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids. Weldegergis BT; Zhu F; Poelman EH; Dicke M Oecologia; 2015 Mar; 177(3):701-713. PubMed ID: 25370387 [TBL] [Abstract][Full Text] [Related]
18. Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress. Shakirova F; Allagulova C; Maslennikova D; Fedorova K; Yuldashev R; Lubyanova A; Bezrukova M; Avalbaev A Plant Physiol Biochem; 2016 Nov; 108():539-548. PubMed ID: 27611241 [TBL] [Abstract][Full Text] [Related]
19. Drought tolerance improvement in plants: an endophytic bacterial approach. Ullah A; Nisar M; Ali H; Hazrat A; Hayat K; Keerio AA; Ihsan M; Laiq M; Ullah S; Fahad S; Khan A; Khan AH; Akbar A; Yang X Appl Microbiol Biotechnol; 2019 Sep; 103(18):7385-7397. PubMed ID: 31375881 [TBL] [Abstract][Full Text] [Related]
20. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Kosakivska IV; Vedenicheva NP; Babenko LM; Voytenko LV; Romanenko KO; Vasyuk VA Mol Biol Rep; 2022 Jan; 49(1):617-628. PubMed ID: 34669126 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]