BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30284332)

  • 1. Modulating long-range energetics via helix stabilization: A case study using T4 lysozyme.
    Rosemond SN; Hamadani KM; Cate JHD; Marqusee S
    Protein Sci; 2018 Dec; 27(12):2084-2093. PubMed ID: 30284332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring subdomain cooperativity in T4 lysozyme I: structural and energetic studies of a circular permutant and protein fragment.
    Cellitti J; Llinas M; Echols N; Shank EA; Gillespie B; Kwon E; Crowder SM; Dahlquist FW; Alber T; Marqusee S
    Protein Sci; 2007 May; 16(5):842-51. PubMed ID: 17400926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subdomain interactions as a determinant in the folding and stability of T4 lysozyme.
    Llinás M; Marqusee S
    Protein Sci; 1998 Jan; 7(1):96-104. PubMed ID: 9514264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring subdomain cooperativity in T4 lysozyme II: uncovering the C-terminal subdomain as a hidden intermediate in the kinetic folding pathway.
    Cellitti J; Bernstein R; Marqusee S
    Protein Sci; 2007 May; 16(5):852-62. PubMed ID: 17400925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetics of T4 lysozyme reveal a hierarchy of conformations.
    Llinás M; Gillespie B; Dahlquist FW; Marqusee S
    Nat Struct Biol; 1999 Nov; 6(11):1072-8. PubMed ID: 10542101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relocation or duplication of the helix A sequence of T4 lysozyme causes only modest changes in structure but can increase or decrease the rate of folding.
    Sagermann M; Baase WA; Mooers BH; Gay L; Matthews BW
    Biochemistry; 2004 Feb; 43(5):1296-301. PubMed ID: 14756565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysozyme: a model enzyme in protein crystallography.
    Strynadka NC; James MN
    EXS; 1996; 75():185-222. PubMed ID: 8765301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and orientation of T4 lysozyme bound to the small heat shock protein alpha-crystallin.
    Claxton DP; Zou P; Mchaourab HS
    J Mol Biol; 2008 Jan; 375(4):1026-39. PubMed ID: 18062989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SRLS analysis of 15N relaxation from bacteriophage T4 lysozyme: a tensorial perspective that features domain motion.
    Meirovitch E
    J Phys Chem B; 2012 May; 116(21):6118-27. PubMed ID: 22568692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of an engineered T4 lysozyme exclude helix to sheet transition, and provide insights into long distance, intra-protein switchable motion.
    Biggers L; Elhabashy H; Ackad E; Yousef MS
    Protein Sci; 2020 Feb; 29(2):542-554. PubMed ID: 31702853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of T4 lysozyme hinge-bending motion by fluorescence correlation spectroscopy.
    Yirdaw RB; McHaourab HS
    Biophys J; 2012 Oct; 103(7):1525-36. PubMed ID: 23062345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified T4 Lysozyme Fusion Proteins Facilitate G Protein-Coupled Receptor Crystallogenesis.
    Thorsen TS; Matt R; Weis WI; Kobilka BK
    Structure; 2014 Nov; 22(11):1657-64. PubMed ID: 25450769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation.
    Zheng W; Glenn P
    J Chem Phys; 2015 Jan; 142(3):035101. PubMed ID: 25612731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme.
    Shashidharamurthy R; Koteiche HA; Dong J; McHaourab HS
    J Biol Chem; 2005 Feb; 280(7):5281-9. PubMed ID: 15542604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The folding pathway of T4 lysozyme: an on-pathway hidden folding intermediate.
    Kato H; Vu ND; Feng H; Zhou Z; Bai Y
    J Mol Biol; 2007 Jan; 365(3):881-91. PubMed ID: 17097105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and genetic analysis of electrostatic and other interactions in bacteriophage T4 lysozyme.
    Dao-pin S; Nicholson H; Baase WA; Zhang XJ; Wozniak JA; Matthews BW
    Ciba Found Symp; 1991; 161():52-62. PubMed ID: 1814696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subdomain competition, cooperativity, and topological frustration in the folding of CheY.
    Hills RD; Brooks CL
    J Mol Biol; 2008 Oct; 382(2):485-95. PubMed ID: 18644380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of initiation sites for T4 lysozyme folding using CD and NMR spectroscopy of peptide fragments.
    Najbar LV; Craik DJ; Wade JD; McLeish MJ
    Biochemistry; 2000 May; 39(19):5911-20. PubMed ID: 10801343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lessons from the lysozyme of phage T4.
    Baase WA; Liu L; Tronrud DE; Matthews BW
    Protein Sci; 2010 Apr; 19(4):631-41. PubMed ID: 20095051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.