BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 30284359)

  • 1. Composition Tailoring via N and S Co-doping and Structure Tuning by Constructing Hierarchical Pores: Metal-Free Catalysts for High-Performance Electrochemical Reduction of CO
    Yang H; Wu Y; Lin Q; Fan L; Chai X; Zhang Q; Liu J; He C; Lin Z
    Angew Chem Int Ed Engl; 2018 Nov; 57(47):15476-15480. PubMed ID: 30284359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical Reduction of CO
    Han H; Park S; Jang D; Lee S; Kim WB
    ChemSusChem; 2020 Feb; 13(3):539-547. PubMed ID: 31793240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Evidence for Metallic Cobalt Boosting CO
    He C; Zhang Y; Zhang Y; Zhao L; Yuan LP; Zhang J; Ma J; Hu JS
    Angew Chem Int Ed Engl; 2020 Mar; 59(12):4914-4919. PubMed ID: 31943656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoP Nanoparticles Supported on Indium-Doped Porous Carbon: Outstanding Catalysts for Highly Efficient CO
    Sun X; Lu L; Zhu Q; Wu C; Yang D; Chen C; Han B
    Angew Chem Int Ed Engl; 2018 Feb; 57(9):2427-2431. PubMed ID: 29345804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into atomically dispersed porous M-N-C single-site catalysts for electrochemical CO
    Takele Menisa L; Cheng P; Long C; Qiu X; Zheng Y; Han J; Zhang Y; Gao Y; Tang Z
    Nanoscale; 2020 Aug; 12(31):16617-16626. PubMed ID: 32756715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ
    ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boron-Doped Nickel-Nitrogen-Carbon Single-Atom Catalyst for Boosting Electrochemical CO
    Song J; Lei X; Mu J; Li J; Song X; Yan L; Ding Y
    Small; 2023 Dec; 19(52):e2305666. PubMed ID: 37635104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Free Fluorine-Doped Carbon Electrocatalyst for CO
    Xie J; Zhao X; Wu M; Li Q; Wang Y; Yao J
    Angew Chem Int Ed Engl; 2018 Jul; 57(31):9640-9644. PubMed ID: 29611887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomass-Derived N-Doped Carbon for Efficient Electrocatalytic CO
    Hao X; An X; Patil AM; Wang P; Ma X; Du X; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3738-3747. PubMed ID: 33455162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Efficient Porous Carbon Electrocatalyst with Controllable N-Species Content for Selective CO
    Ye L; Ying Y; Sun D; Zhang Z; Fei L; Wen Z; Qiao J; Huang H
    Angew Chem Int Ed Engl; 2020 Feb; 59(8):3244-3251. PubMed ID: 31814233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar Blowing-Induced Porous Cobalt Phosphide/Nitrogen-Doped Carbon Nanostructures with Enhanced Electrochemical Oxidation Performance toward Water and Other Small Molecules.
    Zhu C; Fu S; Xu BZ; Song J; Shi Q; Engelhard MH; Li X; Beckman SP; Sun J; Du D; Lin Y
    Small; 2017 Sep; 13(33):. PubMed ID: 28656598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile Synthesis and Insight of Atomically Dispersed Ni Catalyst on N-Doped Carbonized Lignin for Highly Efficient Electrochemical CO
    Park GD; Sirisomboonchai S; Norinaga K
    ChemSusChem; 2023 Aug; 16(16):e202300530. PubMed ID: 37265195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric and Electronic Structural Engineering of Isolated Ni Single Atoms for a Highly Efficient CO
    Song I; Eom Y; P MA; Hong DH; Balamurugan M; Boppella R; Kim DH; Kim TK
    Small; 2023 Jul; 19(30):e2300049. PubMed ID: 37058139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting CO
    Chen C; Sun X; Yan X; Wu Y; Liu H; Zhu Q; Bediako BBA; Han B
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):11123-11129. PubMed ID: 32239780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO
    Ju W; Bagger A; Hao GP; Varela AS; Sinev I; Bon V; Roldan Cuenya B; Kaskel S; Rossmeisl J; Strasser P
    Nat Commun; 2017 Oct; 8(1):944. PubMed ID: 29038491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General Synthetic Strategy to Ordered Mesoporous Carbon Catalysts with Single-Atom Metal Sites for Electrochemical CO
    Luo Z; Yin Z; Yu J; Yan Y; Hu B; Nie R; Kolln AF; Wu X; Behera RK; Chen M; Zhou L; Liu F; Wang B; Huang W; Zhang S; Qi L
    Small; 2022 Apr; 18(16):e2107799. PubMed ID: 35229465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Synthesis of Hierarchically Porous Ni-N-C for Efficient CO
    Zhou C; Zhang R; Rong Y; Yang Y; Jiang X
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42585-42593. PubMed ID: 37649346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Pyridinic Nitrogen as Highly Active Metal-Free Coordination Sites at the Biotic-Abiotic Interface for Bio-Electrochemical CO
    Xia R; Cheng J; Chen Z; Zhang Z; Zhou X; Zhou J; Zhang M
    Small; 2024 May; 20(18):e2306331. PubMed ID: 38054812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition Metal Nitrides as Promising Catalyst Supports for Tuning CO/H
    Liu Y; Tian D; Biswas AN; Xie Z; Hwang S; Lee JH; Meng H; Chen JG
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11345-11348. PubMed ID: 32286728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc-Coordinated Nitrogen-Codoped Graphene as an Efficient Catalyst for Selective Electrochemical Reduction of CO
    Chen Z; Mou K; Yao S; Liu L
    ChemSusChem; 2018 Sep; 11(17):2944-2952. PubMed ID: 29956488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.