These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 3028493)
1. Glucagon treatment of rats activates the respiratory chain of liver mitochondria at more than one site. Halestrap AP Biochim Biophys Acta; 1987 Feb; 927(2):280-90. PubMed ID: 3028493 [TBL] [Abstract][Full Text] [Related]
2. The nature of the stimulation of the respiratory chain of rat liver mitochondria by glucagon pretreatment of animals. Halestrap AP Biochem J; 1982 Apr; 204(1):37-47. PubMed ID: 7115329 [TBL] [Abstract][Full Text] [Related]
3. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'. Halestrap AP Biochem J; 1982 Apr; 204(1):49-59. PubMed ID: 6288019 [TBL] [Abstract][Full Text] [Related]
4. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria. Beattie DS; Japa S; Howton M; Zhu QS Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin. VON Jagow G; Bohrer C Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667 [TBL] [Abstract][Full Text] [Related]
6. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain. Frerman FE Biochim Biophys Acta; 1987 Sep; 893(2):161-9. PubMed ID: 3620453 [TBL] [Abstract][Full Text] [Related]
7. Sites of inhibition of mitochondrial electron transport by rhein. Floridi A; Castiglione S; Bianchi C Biochem Pharmacol; 1989 Mar; 38(5):743-51. PubMed ID: 2522779 [TBL] [Abstract][Full Text] [Related]
8. Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Forsmark-Andrée P; Lee CP; Dallner G; Ernster L Free Radic Biol Med; 1997; 22(3):391-400. PubMed ID: 8981030 [TBL] [Abstract][Full Text] [Related]
9. The effect of ring substituents on the mechanism of interaction of exogenous quinones with the mitochondrial respiratory chain. Chen M; Liu BL; Gu LQ; Zhu QS Biochim Biophys Acta; 1986 Oct; 851(3):469-74. PubMed ID: 3019395 [TBL] [Abstract][Full Text] [Related]
10. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents. Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547 [TBL] [Abstract][Full Text] [Related]
11. Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MMP+) and N-methyl-beta-carbolines? Krueger MJ; Tan AK; Ackrell BA; Singer TP Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):673-6. PubMed ID: 8489493 [TBL] [Abstract][Full Text] [Related]
12. Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. Bernardi P; Azzone GF J Biol Chem; 1981 Jul; 256(14):7187-92. PubMed ID: 6265441 [TBL] [Abstract][Full Text] [Related]
13. Bypasses of the antimycin a block of mitochondrial electron transport in relation to ubisemiquinone function. Alexandre A; Lehninger AL Biochim Biophys Acta; 1984 Oct; 767(1):120-9. PubMed ID: 6091750 [TBL] [Abstract][Full Text] [Related]
14. The respiratory chain in yeast behaves as a single functional unit. Boumans H; Grivell LA; Berden JA J Biol Chem; 1998 Feb; 273(9):4872-7. PubMed ID: 9478928 [TBL] [Abstract][Full Text] [Related]
15. Uptake of the neurotoxin 1-methyl-4-phenylpyridine (MPP+) by mitochondria and its relation to the inhibition of the mitochondrial oxidation of NAD+-linked substrates by MPP+. Ramsay RR; Salach JI; Singer TP Biochem Biophys Res Commun; 1986 Jan; 134(2):743-8. PubMed ID: 2868716 [TBL] [Abstract][Full Text] [Related]
16. Studies of the mitochondria from Eimeria tenella and inhibition of the electron transport by quinolone coccidiostats. Wang CC Biochim Biophys Acta; 1975 Aug; 396(2):210-9. PubMed ID: 1171697 [TBL] [Abstract][Full Text] [Related]
17. [The effect of inhibitors of the Q-cycle on cyano-resistant oxidation of malate by rat liver mitochondria in the presence of menadione]. Kolesova GM; Karnaukhova LV; Segal' NK; Iaguzhinskiĭ LS Biokhimiia; 1993 Oct; 58(10):1630-40. PubMed ID: 8268305 [TBL] [Abstract][Full Text] [Related]
18. Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. Wikström M FEBS Lett; 1984 Apr; 169(2):300-4. PubMed ID: 6325245 [TBL] [Abstract][Full Text] [Related]
19. Alteration of inner-membrane components and damage to electron-transfer activities of bovine heart submitochondrial particles induced by NADPH-dependent lipid peroxidation. Narabayashi H; Takeshige K; Minakami S Biochem J; 1982 Jan; 202(1):97-105. PubMed ID: 7082319 [TBL] [Abstract][Full Text] [Related]
20. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria. Zhu QS; Beattie DS Biochim Biophys Acta; 1988 Jul; 934(3):303-13. PubMed ID: 2840117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]