BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 30284969)

  • 41. CCAAT/enhancer binding protein β is required for satellite cell self-renewal.
    Lala-Tabbert N; AlSudais H; Marchildon F; Fu D; Wiper-Bergeron N
    Skelet Muscle; 2016 Dec; 6(1):40. PubMed ID: 27923399
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Nuclear Receptor and Clock Repressor Rev-erbα Suppresses Myogenesis.
    Chatterjee S; Yin H; Li W; Lee J; Yechoor VK; Ma K
    Sci Rep; 2019 Mar; 9(1):4585. PubMed ID: 30872796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Zfp422 promotes skeletal muscle differentiation by regulating EphA7 to induce appropriate myoblast apoptosis.
    Nie Y; Cai S; Yuan R; Ding S; Zhang X; Chen L; Chen Y; Mo D
    Cell Death Differ; 2020 May; 27(5):1644-1659. PubMed ID: 31685980
    [TBL] [Abstract][Full Text] [Related]  

  • 44. miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4.
    Lee KP; Shin YJ; Panda AC; Abdelmohsen K; Kim JY; Lee SM; Bahn YJ; Choi JY; Kwon ES; Baek SJ; Kim SY; Gorospe M; Kwon KS
    Genes Dev; 2015 Aug; 29(15):1605-17. PubMed ID: 26215566
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Loss of HDAC11 accelerates skeletal muscle regeneration in mice.
    Núñez-Álvarez Y; Hurtado E; Muñoz M; García-Tuñon I; Rech GE; Pluvinet R; Sumoy L; Pendás AM; Peinado MA; Suelves M
    FEBS J; 2021 Feb; 288(4):1201-1223. PubMed ID: 32602219
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rbm24 modulates adult skeletal muscle regeneration via regulation of alternative splicing.
    Zhang M; Han Y; Liu J; Liu L; Zheng L; Chen Y; Xia R; Yao D; Cai X; Xu X
    Theranostics; 2020; 10(24):11159-11177. PubMed ID: 33042276
    [No Abstract]   [Full Text] [Related]  

  • 47. PKCε as a novel promoter of skeletal muscle differentiation and regeneration.
    Di Marcantonio D; Galli D; Carubbi C; Gobbi G; Queirolo V; Martini S; Merighi S; Vaccarezza M; Maffulli N; Sykes SM; Vitale M; Mirandola P
    Exp Cell Res; 2015 Nov; 339(1):10-9. PubMed ID: 26431586
    [TBL] [Abstract][Full Text] [Related]  

  • 48. KLF7 Regulates Satellite Cell Quiescence in Response to Extracellular Signaling.
    Wang X; Shen QW; Wang J; Zhang Z; Feng F; Chen T; Zhang Y; Wei H; Li Z; Wang X; Wang Y
    Stem Cells; 2016 May; 34(5):1310-20. PubMed ID: 26930448
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.
    Subramaniam S; Sreenivas P; Cheedipudi S; Reddy VR; Shashidhara LS; Chilukoti RK; Mylavarapu M; Dhawan J
    PLoS One; 2014; 8(6):e65097. PubMed ID: 23755177
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stem Cell Aging in Skeletal Muscle Regeneration and Disease.
    Yamakawa H; Kusumoto D; Hashimoto H; Yuasa S
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155842
    [TBL] [Abstract][Full Text] [Related]  

  • 51. "Known Unknowns": Current Questions in Muscle Satellite Cell Biology.
    Cornelison D
    Curr Top Dev Biol; 2018; 126():205-233. PubMed ID: 29304999
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A robust Pax7EGFP mouse that enables the visualization of dynamic behaviors of muscle stem cells.
    Tichy ED; Sidibe DK; Greer CD; Oyster NM; Rompolas P; Rosenthal NA; Blau HM; Mourkioti F
    Skelet Muscle; 2018 Aug; 8(1):27. PubMed ID: 30139374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A requirement of Polo-like kinase 1 in murine embryonic myogenesis and adult muscle regeneration.
    Jia Z; Nie Y; Yue F; Kong Y; Gu L; Gavin TP; Liu X; Kuang S
    Elife; 2019 Aug; 8():. PubMed ID: 31393265
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation, culture, and transplantation of muscle satellite cells.
    Motohashi N; Asakura Y; Asakura A
    J Vis Exp; 2014 Apr; (86):. PubMed ID: 24747722
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Skeletal muscle progenitors are sensitive to collagen architectural features of fibril size and cross linking.
    Hu LY; Mileti CJ; Loomis T; Brashear SE; Ahmad S; Chellakudam RR; Wohlgemuth RP; Gionet-Gonzales MA; Leach JK; Smith LR
    Am J Physiol Cell Physiol; 2021 Aug; 321(2):C330-C342. PubMed ID: 34191625
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular signature of quiescent satellite cells in adult skeletal muscle.
    Fukada S; Uezumi A; Ikemoto M; Masuda S; Segawa M; Tanimura N; Yamamoto H; Miyagoe-Suzuki Y; Takeda S
    Stem Cells; 2007 Oct; 25(10):2448-59. PubMed ID: 17600112
    [TBL] [Abstract][Full Text] [Related]  

  • 57. β-Catenin Activation in Muscle Progenitor Cells Regulates Tissue Repair.
    Rudolf A; Schirwis E; Giordani L; Parisi A; Lepper C; Taketo MM; Le Grand F
    Cell Rep; 2016 May; 15(6):1277-90. PubMed ID: 27134174
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphorylation of eIF2α Is a Translational Control Mechanism Regulating Muscle Stem Cell Quiescence and Self-Renewal.
    Zismanov V; Chichkov V; Colangelo V; Jamet S; Wang S; Syme A; Koromilas AE; Crist C
    Cell Stem Cell; 2016 Jan; 18(1):79-90. PubMed ID: 26549106
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mechanosensitive ion channel PIEZO1 promotes satellite cell function in muscle regeneration.
    Hirano K; Tsuchiya M; Shiomi A; Takabayashi S; Suzuki M; Ishikawa Y; Kawano Y; Takabayashi Y; Nishikawa K; Nagao K; Umemoto E; Kitajima Y; Ono Y; Nonomura K; Shintaku H; Mori Y; Umeda M; Hara Y
    Life Sci Alliance; 2023 Feb; 6(2):. PubMed ID: 36446523
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of a novel miR-206-Notch3 pathway regulating mouse myoblasts proliferation.
    Zhang Z; Chen Y; Li B; Yao Y; Jiang A; Wei W; Liu H; Wu W
    Gene; 2019 May; 695():57-64. PubMed ID: 30763672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.