These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30285014)

  • 21. Light-Activated Colloidal Micromotors with Synthetically Tunable Shapes and Shape-Directed Propulsion.
    Mu Y; Duan W; Hsu KY; Wang Z; Xu W; Wang Y
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):57113-57121. PubMed ID: 36512379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directed Flow of Micromotors through Alignment Interactions with Micropatterned Ratchets.
    Katuri J; Caballero D; Voituriez R; Samitier J; Sanchez S
    ACS Nano; 2018 Jul; 12(7):7282-7291. PubMed ID: 29949338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microscopic and continuum descriptions of Janus motor fluid flow fields.
    Reigh SY; Huang MJ; Schofield J; Kapral R
    Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2080):. PubMed ID: 27698037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical collective motion of a mixture of active dipolar Janus particles and passive charged colloids in two dimensions.
    Harder J; Cacciuto A
    Phys Rev E; 2018 Feb; 97(2-1):022603. PubMed ID: 29548188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bulk synthesis of silver-head colloidal rodlike micromotors.
    Gao Y; Dullens RPA; Aarts DGAL
    Soft Matter; 2018 Sep; 14(35):7119-7125. PubMed ID: 30027982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dimer motion on a periodic substrate: spontaneous symmetry breaking and absolute negative mobility.
    Speer D; Eichhorn R; Evstigneev M; Reimann P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061132. PubMed ID: 23005076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vortex formation of spherical self-propelled particles around a circular obstacle.
    Pan JX; Wei H; Qi MJ; Wang HF; Zhang JJ; Tian WD; Chen K
    Soft Matter; 2020 Jun; 16(23):5545-5551. PubMed ID: 32510067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A microscopic model for chemically-powered Janus motors.
    Huang MJ; Schofield J; Kapral R
    Soft Matter; 2016 Jul; 12(25):5581-9. PubMed ID: 27241052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond Janus Geometry: Characterization of Flow Fields around Nonspherical Photocatalytic Microswimmers.
    Heckel S; Bilsing C; Wittmann M; Gemming T; Büttner L; Czarske J; Simmchen J
    Adv Sci (Weinh); 2022 Aug; 9(24):e2105009. PubMed ID: 35839469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of Janus motors with microscopically reversible kinetics.
    Huang MJ; Schofield J; Gaspard P; Kapral R
    J Chem Phys; 2018 Jul; 149(2):024904. PubMed ID: 30007391
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Material-dependent performance of fuel-free, light-activated, self-propelling colloids.
    Leeth Holterhoff A; Girgis V; Gibbs JG
    Chem Commun (Camb); 2020 Apr; 56(29):4082-4085. PubMed ID: 32159550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles.
    Ramachandran S; Sunil Kumar PB; Pagonabarraga I
    Eur Phys J E Soft Matter; 2006 Jun; 20(2):151-8. PubMed ID: 16779527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Driving dynamic colloidal assembly using eccentric self-propelled colloids.
    Ma Z; Lei QL; Ni R
    Soft Matter; 2017 Dec; 13(47):8940-8946. PubMed ID: 29144529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nano- and micromotors for cleaning polluted waters: focused review on pollutant removal mechanisms.
    Eskandarloo H; Kierulf A; Abbaspourrad A
    Nanoscale; 2017 Sep; 9(37):13850-13863. PubMed ID: 28920114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upstream Rheotaxis of Catalytic Janus Spheres.
    Sharan P; Xiao Z; Mancuso V; Uspal WE; Simmchen J
    ACS Nano; 2022 Mar; 16(3):4599-4608. PubMed ID: 35230094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Change the Collective Behaviors of Colloidal Motors by Tuning Electrohydrodynamic Flow at the Subparticle Level.
    Yang X; Wu N
    Langmuir; 2018 Jan; 34(3):952-960. PubMed ID: 28972785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of Fractal Cluster Gels with Embedded Active Colloids.
    Szakasits ME; Zhang W; Solomon MJ
    Phys Rev Lett; 2017 Aug; 119(5):058001. PubMed ID: 28949737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light-induced self-assembly of active rectification devices.
    Stenhammar J; Wittkowski R; Marenduzzo D; Cates ME
    Sci Adv; 2016 Apr; 2(4):e1501850. PubMed ID: 27051883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Active rotational dynamics of a self-diffusiophoretic colloidal motor.
    Reigh SY; Huang MJ; Löwen H; Lauga E; Kapral R
    Soft Matter; 2020 Feb; 16(5):1236-1245. PubMed ID: 31904757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electric-field-induced assembly and propulsion of chiral colloidal clusters.
    Ma F; Wang S; Wu DT; Wu N
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6307-12. PubMed ID: 25941383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.