BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 30285084)

  • 1. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic Characterization of Lysine Post-translational Modification Sites Using MUscADEL.
    Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Webb GI; Xu D; Akutsu T; Song J
    Methods Mol Biol; 2022; 2499():205-219. PubMed ID: 35696083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences.
    Chen Z; Zhao P; Li F; Wang Y; Smith AI; Webb GI; Akutsu T; Baggag A; Bensmail H; Song J
    Brief Bioinform; 2020 Sep; 21(5):1676-1696. PubMed ID: 31714956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile.
    Liu Y; Wang M; Xi J; Luo F; Li A
    Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework.
    Zhang Y; Xie R; Wang J; Leier A; Marquez-Lago TT; Akutsu T; Webb GI; Chou KC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2185-2199. PubMed ID: 30351377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning.
    Chen YZ; Wang ZZ; Wang Y; Ying G; Chen Z; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34002774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational identification of multiple lysine PTM sites by analyzing the instance hardness and feature importance.
    Ahmed S; Rahman A; Hasan MAM; Ahmad S; Shovan SM
    Sci Rep; 2021 Sep; 11(1):18882. PubMed ID: 34556767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive review of the imbalance classification of protein post-translational modifications.
    Dou L; Yang F; Xu L; Zou Q
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33834199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ResNetKhib: a novel cell type-specific tool for predicting lysine 2-hydroxyisobutylation sites via transfer learning.
    Jia X; Zhao P; Li F; Qin Z; Ren H; Li J; Miao C; Zhao Q; Akutsu T; Dou G; Chen Z; Song J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36880172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive-unlabelled learning of glycosylation sites in the human proteome.
    Li F; Zhang Y; Purcell AW; Webb GI; Chou KC; Lithgow T; Li C; Song J
    BMC Bioinformatics; 2019 Mar; 20(1):112. PubMed ID: 30841845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational refinement of post-translational modifications predicted from tandem mass spectrometry.
    Chung C; Liu J; Emili A; Frey BJ
    Bioinformatics; 2011 Mar; 27(6):797-806. PubMed ID: 21258065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models.
    Wang X; Li C; Li F; Sharma VS; Song J; Webb GI
    BMC Bioinformatics; 2019 Nov; 20(1):602. PubMed ID: 31752668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Systematic Review on Posttranslational Modification in Proteins: Feature Construction, Algorithm and Webserver.
    Xu Y; Yang Y; Wang Z; Li C; Shao Y
    Protein Pept Lett; 2018; 25(9):807-814. PubMed ID: 30255739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MLysPRED: graph-based multi-view clustering and multi-dimensional normal distribution resampling techniques to predict multiple lysine sites.
    Zuo Y; Hong Y; Zeng X; Zhang Q; Liu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35953081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. STALLION: a stacking-based ensemble learning framework for prokaryotic lysine acetylation site prediction.
    Basith S; Lee G; Manavalan B
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34532736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PRISMOID: a comprehensive 3D structure database for post-translational modifications and mutations with functional impact.
    Li F; Fan C; Marquez-Lago TT; Leier A; Revote J; Jia C; Zhu Y; Smith AI; Webb GI; Liu Q; Wei L; Li J; Song J
    Brief Bioinform; 2020 May; 21(3):1069-1079. PubMed ID: 31161204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Trends on the Development of Machine Learning Approaches for the Prediction of Lysine Acetylation Sites.
    Basith S; Chang HJ; Nithiyanandam S; Shin TH; Manavalan B; Lee G
    Curr Med Chem; 2022; 29(2):235-250. PubMed ID: 34477504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A general user interface for prediction servers of proteins' post-translational modification sites.
    Zhou F; Xue Y; Yao X; Xu Y
    Nat Protoc; 2006; 1(3):1318-21. PubMed ID: 17406417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.