These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 3028520)

  • 1. Particulate aluminum oxide as a bone graft material.
    Luedemann RE; Thomas KA; Cook SD
    Biomater Med Devices Artif Organs; 1986; 14(3-4):257-73. PubMed ID: 3028520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo evaluation of anterior cervical fusions with hydroxylapatite graft material.
    Cook SD; Dalton JE; Tan EH; Tejeiro WV; Young MJ; Whitecloud TS
    Spine (Phila Pa 1976); 1994 Aug; 19(16):1856-66. PubMed ID: 7973985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in bone strength after augmentation with hydroxylapatite or hydroxylapatite/bone.
    Lieblich SE; Topazian RG
    J Oral Maxillofac Surg; 1987 Dec; 45(12):1055-7. PubMed ID: 2826734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusion rate and biomechanical stiffness of hydroxylapatite versus autogenous bone grafts for anterior discectomy. An in vivo animal study.
    Pintar FA; Maiman DJ; Hollowell JP; Yoganandan N; Droese KW; Reinartz JM; Cuddy B
    Spine (Phila Pa 1976); 1994 Nov; 19(22):2524-8. PubMed ID: 7855676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The affinity of bone to hydroxyapatite and alumina in experimentally induced osteoporosis.
    Hayashi K; Uenoyama K; Matsuguchi N; Nakagawa S; Sugioka Y
    J Arthroplasty; 1989 Sep; 4(3):257-62. PubMed ID: 2552019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [New bone formation following implantation of various hydroxyapatite ceramics. Animal experiment with bore hole models of the sheep tibia].
    Mandelkow HK; Hallfeldt KK; Kessler SB; Gayk M; Siebeck M; Schweiberer L
    Unfallchirurg; 1990 Aug; 93(8):376-9. PubMed ID: 2392690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of bone healing, as assessed by computed tomography, following tibial tuberosity advancement in dogs with and without autogenous cancellous bone grafts.
    James DR; Webster N; White JD; Marchevsky AM; Cashmore RG; Havlicek M; Fearnside S; Black AP
    N Z Vet J; 2017 Sep; 65(5):270-276. PubMed ID: 28637394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Healing of mandibular ridge augmentations using hydroxylapatite with and without autogenous bone in dogs.
    Block MS; Kent JN
    J Oral Maxillofac Surg; 1985 Jan; 43(1):3-7. PubMed ID: 2981305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of polyglycolic acid mesh to confine particulate hydroxylapatite for augmentation of bone in the rat.
    Silverberg M; Singh M; Sreekanth S; Gans BJ
    J Oral Maxillofac Surg; 1986 Nov; 44(11):877-86. PubMed ID: 2430083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of hydroxylapatite particles in repair of alveolar clefts in dogs.
    Cullum PE; Frost DE; Newland TB; Keane TM; Ehler WJ
    J Oral Maxillofac Surg; 1988 Apr; 46(4):290-6. PubMed ID: 2834525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evaluation of a biphasic calcium phosphate ceramic for use in grafting long-bone diaphyseal defects.
    Moore DC; Chapman MW; Manske D
    J Orthop Res; 1987; 5(3):356-65. PubMed ID: 3040949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alveolar ridge augmentation using nonresorbable hydroxylapatite with or without autogenous cancellous bone.
    Kent JN; Quinn JH; Zide MF; Guerra LR; Boyne PJ
    J Oral Maxillofac Surg; 1983 Oct; 41(10):629-42. PubMed ID: 6312003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparative studies on the ingrowth behavior and the bone adhesion of various implant materials. An animal experiment].
    Eitenmüller J; Schmickal T; David A; Muhr G
    Unfallchirurg; 1990 Sep; 93(9):405-11. PubMed ID: 2218556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions.
    Cook SD; Dalton JE; Tan EH; Whitecloud TS; Rueger DC
    Spine (Phila Pa 1976); 1994 Aug; 19(15):1655-63. PubMed ID: 7973957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Hydroxyapatite porous characteristics on healing outcomes in rabbit posterolateral spinal fusion model.
    Motomiya M; Ito M; Takahata M; Kadoya K; Irie K; Abumi K; Minami A
    Eur Spine J; 2007 Dec; 16(12):2215-24. PubMed ID: 17891422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation.
    Klein CP; Patka P; den Hollander W
    Biomaterials; 1989 Jan; 10(1):59-62. PubMed ID: 2540845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of hydroxylapatite graft materials in canine cervical spine fusions.
    Cook SD; Reynolds MC; Whitecloud TS; Routman AS; Harding AF; Kay JF; Jarcho M
    Spine (Phila Pa 1976); 1986 May; 11(4):305-9. PubMed ID: 3018946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of new bone growth on aluminium oxide implant contact surfaces after oral administration of ossein-hydroxyapatite compound to rats.
    Schmidt KH; Wörner UM; Buck HJ
    Curr Med Res Opin; 1988; 11(2):107-15. PubMed ID: 2851412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ridge augmentation using solid and porous hydroxylapatite particles with and without autogenous bone or plaster.
    Frame JW; Rout PG; Browne RM
    J Oral Maxillofac Surg; 1987 Sep; 45(9):771-8. PubMed ID: 3040945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revision, without cement, of aseptically loose, cemented total hip prostheses. Quantitative comparison of the effects of four types of medullary treatment on bone ingrowth in a canine model.
    Turner TM; Urban RM; Sumner DR; Galante JO
    J Bone Joint Surg Am; 1993 Jun; 75(6):845-62. PubMed ID: 8314825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.