These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30285436)

  • 1. Size Stability Study of Catalytically Active Sub-2 nm Diameter Gold Nanoparticles Synthesized with Weak Stabilizers.
    Pattadar DK; Zamborini FP
    J Am Chem Soc; 2018 Oct; 140(43):14126-14133. PubMed ID: 30285436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Metal Nanoparticle Aggregate Structure on the Thermodynamics of Oxidative Dissolution.
    Pattadar DK; Nambiar HN; Allen SL; Jasinski JB; Zamborini FP
    Langmuir; 2021 Jun; 37(24):7320-7327. PubMed ID: 34097413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of highly unstable <4 nm diameter gold nanoparticles 850 mV negative of the bulk oxidation potential.
    Masitas RA; Zamborini FP
    J Am Chem Soc; 2012 Mar; 134(11):5014-7. PubMed ID: 22372940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Size, Coverage, and Dispersity on the Potential-Controlled Ostwald Ripening of Metal Nanoparticles.
    Pattadar DK; Zamborini FP
    Langmuir; 2019 Dec; 35(50):16416-16426. PubMed ID: 31647240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical size discrimination of gold nanoparticles attached to glass/indium-tin-oxide electrodes by oxidation in bromide-containing electrolyte.
    Ivanova OS; Zamborini FP
    Anal Chem; 2010 Jul; 82(13):5844-50. PubMed ID: 20527732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surface charge and electrode material on the size-dependent oxidation of surface-attached metal nanoparticles.
    Masitas RA; Khachian IV; Bill BL; Zamborini FP
    Langmuir; 2014 Nov; 30(43):13075-84. PubMed ID: 25260111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-Dependent Electrophoretic Deposition of Catalytic Gold Nanoparticles.
    Masitas RA; Allen SL; Zamborini FP
    J Am Chem Soc; 2016 Nov; 138(47):15295-15298. PubMed ID: 27806201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size-Selective Electrophoretic Deposition of Gold Nanoparticles Mediated by Hydroquinone Oxidation.
    Allen SL; Zamborini FP
    Langmuir; 2019 Feb; 35(6):2137-2145. PubMed ID: 30649886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Analysis of the Thermal Stability of 0.9-4.1 nm Diameter Gold Nanoclusters.
    Mainali BP; Pattadar DK; Sharma JN; Zamborini FP
    Anal Chem; 2023 Aug; 95(31):11649-11656. PubMed ID: 37506045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversing the Thermodynamics of Galvanic Replacement Reactions by Decreasing the Size of Gold Nanoparticles.
    Pattadar DK; Masitas RA; Stachurski CD; Cliffel DE; Zamborini FP
    J Am Chem Soc; 2020 Nov; 142(45):19268-19277. PubMed ID: 33140961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysosomal responses to different gold forms (nanoparticles, aqueous, bulk) in mussel digestive cells: a trade-off between the toxicity of the capping agent and form, size and exposure concentration.
    Jimeno-Romero A; Izagirre U; Gilliland D; Warley A; Cajaraville MP; Marigómez I; Soto M
    Nanotoxicology; 2017 Jun; 11(5):658-670. PubMed ID: 28758565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation-Dependent Oxidation of Metal Nanoparticles.
    Allen SL; Sharma JN; Zamborini FP
    J Am Chem Soc; 2017 Sep; 139(37):12895-12898. PubMed ID: 28853877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoretic Deposition of Hybrid Calcium Alginate-Gold Nanoparticle Hydrogel Films via Catalyzed Electrooxidation of Hydroquinone.
    Nambiar HN; Zamborini FP
    Langmuir; 2023 May; 39(18):6495-6504. PubMed ID: 37093690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction.
    Liu X; Xu H; Xia H; Wang D
    Langmuir; 2012 Sep; 28(38):13720-6. PubMed ID: 22954316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room-Temperature Wet Chemical Synthesis of Au NPs/TiH
    Amin MA; Fadlallah SA; Alosaimi GS; Ahmed EM; Mostafa NY; Roussel P; Szunerits S; Boukherroub R
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30115-30126. PubMed ID: 28771327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of large gold nanoparticles with deformation twinnings by one-step seeded growth with Cu(ii)-mediated Ostwald ripening for determining nitrile and isonitrile groups.
    Wu C; He H; Song Y; Bi C; Xing L; Du W; Li S; Xia H
    Nanoscale; 2020 Aug; 12(32):16934-16943. PubMed ID: 32776026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles.
    Yang T; Li Z; Wang L; Guo C; Sun Y
    Langmuir; 2007 Oct; 23(21):10533-8. PubMed ID: 17867715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of gold nanoparticle films on glass by thermal embedding.
    Karakouz T; Maoz BM; Lando G; Vaskevich A; Rubinstein I
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):978-87. PubMed ID: 21388167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical detection of low concentrations of mercury in water using gold nanoparticles.
    Ratner N; Mandler D
    Anal Chem; 2015; 87(10):5148-55. PubMed ID: 25892337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.