These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 30285453)
1. Tunable Electron-Injection Channels of Heterostructured ZnSe@CdTe Nanocrystals for Surface-Chemistry-Involved Electrochemiluminescence. He Y; Yang L; Zhang F; Zhang B; Zou G J Phys Chem Lett; 2018 Oct; 9(20):6089-6095. PubMed ID: 30285453 [TBL] [Abstract][Full Text] [Related]
2. Adjustable Electrochemiluminescence from Highly Passivated CdTe/CdS Nanocrystals by Simple Surface Decoration with Counterions. He Y; Hou S; Yang L; Zhang F; Zou G Chemistry; 2018 Jul; 24(38):9592-9597. PubMed ID: 29667254 [TBL] [Abstract][Full Text] [Related]
3. Promising Anodic Electrochemiluminescence of Nontoxic Core/Shell CuInS Long X; Zhang F; He Y; Hou S; Zhang B; Zou G Anal Chem; 2018 Mar; 90(5):3563-3569. PubMed ID: 29417813 [TBL] [Abstract][Full Text] [Related]
4. Electrochemiluminescence Tuned by Electron-Hole Recombination from Symmetry-Breaking in Wurtzite ZnSe. Liu S; Zhang Q; Zhang L; Gu L; Zou G; Bao J; Dai Z J Am Chem Soc; 2016 Feb; 138(4):1154-7. PubMed ID: 26785672 [TBL] [Abstract][Full Text] [Related]
5. Spectrum-Resolved Triplex-Color Electrochemiluminescence Multiplexing Immunoassay with Highly-Passivated Nanocrystals as Tags. Zhou J; Nie L; Zhang B; Zou G Anal Chem; 2018 Nov; 90(21):12361-12365. PubMed ID: 30350603 [TBL] [Abstract][Full Text] [Related]
6. An Electrochemiluminescence Sensor Based on Nafion/Magnetic Fe₃O₄ Nanocrystals Modified Electrode for the Determination of Bisphenol A in Environmental Water Samples. Chai J; Yu X; Zhao J; Sun A; Shi X; Li D Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081469 [TBL] [Abstract][Full Text] [Related]
7. Dual-potential encoded electrochemiluminescence for multiplexed gene assay with one luminophore as tag. Gao X; Ren X; Ai Y; Li M; Zhang B; Zou G Biosens Bioelectron; 2023 Sep; 236():115418. PubMed ID: 37279619 [TBL] [Abstract][Full Text] [Related]
8. Tailoring ZnSe-CdSe colloidal quantum dots via cation exchange: from core/shell to alloy nanocrystals. Groeneveld E; Witteman L; Lefferts M; Ke X; Bals S; Van Tendeloo G; Donega Cde M ACS Nano; 2013 Sep; 7(9):7913-30. PubMed ID: 23941394 [TBL] [Abstract][Full Text] [Related]
9. Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Cheng Y; Lei J; Chen Y; Ju H Biosens Bioelectron; 2014 Jan; 51():431-6. PubMed ID: 24011844 [TBL] [Abstract][Full Text] [Related]
10. Ultrasensitive immunoassay based on anodic near-infrared electrochemiluminescence from dual-stabilizer-capped CdTe nanocrystals. Liang G; Liu S; Zou G; Zhang X Anal Chem; 2012 Dec; 84(24):10645-9. PubMed ID: 23163822 [TBL] [Abstract][Full Text] [Related]
11. Dark-red-emitting CdTe/Cd1-x Znx S core/shell quantum dots: preparation and properties. Yang P; Murase N Luminescence; 2013; 28(5):713-8. PubMed ID: 22941972 [TBL] [Abstract][Full Text] [Related]
12. Growth Control of InP/ZnSe Heterostructured Nanocrystals. Shin D; Lee HJ; Jung D; Chae JA; Park JW; Lim J; Im S; Min S; Hwang E; Lee DC; Park YS; Chang JH; Park K; Kim J; Park JS; Bae WK Adv Mater; 2024 Feb; ():e2312250. PubMed ID: 38300222 [TBL] [Abstract][Full Text] [Related]
13. Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/Cd(x)Zn(1 - x)S/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen. Shen H; Yuan H; Niu JZ; Xu S; Zhou C; Ma L; Li LS Nanotechnology; 2011 Sep; 22(37):375602. PubMed ID: 21852741 [TBL] [Abstract][Full Text] [Related]
14. Enhanced electrochemiluminescence quenching of CdS:Mn nanocrystals by CdTe QDs-doped silica nanoparticles for ultrasensitive detection of thrombin. Shan Y; Xu JJ; Chen HY Nanoscale; 2011 Jul; 3(7):2916-23. PubMed ID: 21633752 [TBL] [Abstract][Full Text] [Related]
15. Electrochemistry and Electrochemiluminescence of Organometal Halide Perovskite Nanocrystals in Aqueous Medium. Tan X; Zhang B; Zou G J Am Chem Soc; 2017 Jun; 139(25):8772-8776. PubMed ID: 28598607 [TBL] [Abstract][Full Text] [Related]
16. Direct cation exchange of CdSe nanocrystals into ZnSe enabled by controlled binding between guest cations and organic ligands. Lee S; Yoon DE; Kim D; Shin DJ; Jeong BG; Lee D; Lim J; Bae WK; Lim HK; Lee DC Nanoscale; 2019 Aug; 11(32):15072-15082. PubMed ID: 31372629 [TBL] [Abstract][Full Text] [Related]
17. Cation Exchange Combined with Kirkendall Effect in the Preparation of SnTe/CdTe and CdTe/SnTe Core/Shell Nanocrystals. Jang Y; Yanover D; Čapek RK; Shapiro A; Grumbach N; Kauffmann Y; Sashchiuk A; Lifshitz E J Phys Chem Lett; 2016 Jul; 7(13):2602-9. PubMed ID: 27331900 [TBL] [Abstract][Full Text] [Related]
18. Promising Electrochemiluminescence from CuInS Fu L; Zhang B; Long X; Fu K; Gao X; Zou G Anal Chem; 2019 Aug; 91(15):10221-10226. PubMed ID: 31296003 [TBL] [Abstract][Full Text] [Related]
19. Electrochemiluminescent emission potential tunable Cu-Zn-In-S/ZnS nanocrystals for multiplex microRNAs potential-resolved detection. Jiang Y; Li Q; Xu Y; Bai W; Yang X; Li S; Li Y Biosens Bioelectron; 2022 Apr; 201():113980. PubMed ID: 35032846 [TBL] [Abstract][Full Text] [Related]
20. Promising Mercaptobenzoic Acid-Bridged Charge Transfer for Electrochemiluminescence from CuInS Li Z; Wu S; Zhang B; Fu L; Zou G J Phys Chem Lett; 2019 Sep; 10(18):5408-5413. PubMed ID: 31464133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]