These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 302860)
1. Location of U.V.-absorbing substance in isolated skeletal muscle fibres. The effect of stimulation. Lännergren J J Physiol; 1977 Sep; 270(3):785-800. PubMed ID: 302860 [TBL] [Abstract][Full Text] [Related]
2. A-band length, striation spacing and tension change on stretch of active muscle. Hill L J Physiol; 1977 Apr; 266(3):677-85. PubMed ID: 301188 [TBL] [Abstract][Full Text] [Related]
3. Tension responses to quick length changes of glycerinated skeletal muscle fibres from the frog and tortoise. Heinl P; Kuhn HJ; Rüegg JC J Physiol; 1974 Mar; 237(2):243-58. PubMed ID: 4545181 [TBL] [Abstract][Full Text] [Related]
4. Sarcomere length-tension relations of frog skinned muscle fibres during calcium activation at short lengths. Moss RL J Physiol; 1979 Jul; 292():177-92. PubMed ID: 314975 [TBL] [Abstract][Full Text] [Related]
5. Tension responses to sudden length change in stimulated frog muscle fibres near slack length. Ford LE; Huxley AF; Simmons RM J Physiol; 1977 Jul; 269(2):441-515. PubMed ID: 302333 [TBL] [Abstract][Full Text] [Related]
6. The release of adenosine triphosphate from frog skeletal muscle in vitro. Boyd IA; Forrester T J Physiol; 1968 Nov; 199(1):115-35. PubMed ID: 4300870 [TBL] [Abstract][Full Text] [Related]
7. [Location of adenine nucleotides in striated fibers of skeletal muscles]. Srebnitskaia LK; Budnitskiĭ AA Biofizika; 1982; 27(1):91-4. PubMed ID: 6175347 [TBL] [Abstract][Full Text] [Related]
14. Contraction and recovery of living muscles studies by 31P nuclear magnetic resonance. Dawson MJ; Gadian DG; Wilkie DR J Physiol; 1977 Jun; 267(3):703-35. PubMed ID: 17739 [TBL] [Abstract][Full Text] [Related]
15. Ultrastructural changes accompanying development of fatigue in frog twitch skeletal muscle fibres. Lipska E; Novotova M; Radzyukevich T; Zahradnik I Endocr Regul; 2005 Jun; 39(2):43-52. PubMed ID: 16229154 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. Edman KA; Elzinga G; Noble MI J Physiol; 1978 Aug; 281():139-55. PubMed ID: 309001 [TBL] [Abstract][Full Text] [Related]
17. Chemical change, production of tension and energy following stretch of active muscle of frog. Curtin NA; Woledge RC J Physiol; 1979 Dec; 297(0):539-50. PubMed ID: 317107 [TBL] [Abstract][Full Text] [Related]
18. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects. Radzyukevich T; Lipská E; Pavelková J; Zacharová D Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694 [TBL] [Abstract][Full Text] [Related]
19. Elastic and inelastic behaviour of resting frog muscle fibres. Helber R Pflugers Arch; 1980 Sep; 387(3):261-8. PubMed ID: 6968889 [TBL] [Abstract][Full Text] [Related]
20. [Fiber-type morphology and function of the triads in frog (Rana esculenta) skeletal muscle)]. Dauber W Z Mikrosk Anat Forsch; 1979; 93(3):512-36. PubMed ID: 316237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]