BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30286107)

  • 1. RankProt: A multi criteria-ranking platform to attain protein thermostabilizing mutations and its in vitro applications - Attribute based prediction method on the principles of Analytical Hierarchical Process.
    Chakravorty D; Patra S
    PLoS One; 2018; 13(10):e0203036. PubMed ID: 30286107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategic approach of enzyme engineering by attribute ranking and enzyme immobilization on zinc oxide nanoparticles to attain thermostability in mesophilic Bacillus subtilis lipase for detergent formulation.
    Khan MF; Kundu D; Hazra C; Patra S
    Int J Biol Macromol; 2019 Sep; 136():66-82. PubMed ID: 31181278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.
    Singh B; Bulusu G; Mitra A
    J Comput Aided Mol Des; 2016 Oct; 30(10):899-916. PubMed ID: 27696241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability curves of laboratory evolved thermostable mutants of a Bacillus subtilis lipase.
    Kamal MZ; Ahmad S; Yedavalli P; Rao NM
    Biochim Biophys Acta; 2010 Sep; 1804(9):1850-6. PubMed ID: 20599630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond Network Based on Long Time Molecular Dynamics Simulation.
    Zhang L; Ding Y
    Protein Pept Lett; 2017; 24(7):643-648. PubMed ID: 28464764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of a Bacillus subtilis lipase.
    Rajakumara E; Acharya P; Ahmad S; Shanmugam VM; Rao NM; Sankaranarayanan R
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):160-2. PubMed ID: 14684916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation.
    Kamal MZ; Ahmad S; Molugu TR; Vijayalakshmi A; Deshmukh MV; Sankaranarayanan R; Rao NM
    J Mol Biol; 2011 Oct; 413(3):726-41. PubMed ID: 21925508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations.
    Kumar R; Singh R; Kaur J
    Biochem Biophys Res Commun; 2014 May; 447(4):626-32. PubMed ID: 24751523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A.
    Tian F; Yang C; Wang C; Guo T; Zhou P
    J Mol Model; 2014 Jun; 20(6):2257. PubMed ID: 24827611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.
    Singh B; Bulusu G; Mitra A
    J Phys Chem B; 2015 Jan; 119(2):392-409. PubMed ID: 25495458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysical characterization of mutants of Bacillus subtilis lipase evolved for thermostability: factors contributing to increased activity retention.
    Augustyniak W; Brzezinska AA; Pijning T; Wienk H; Boelens R; Dijkstra BW; Reetz MT
    Protein Sci; 2012 Apr; 21(4):487-97. PubMed ID: 22267088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point mutation Gln121-Arg increased temperature optima of Bacillus lipase (1.4 subfamily) by fifteen degrees.
    Goomber S; Kumar R; Singh R; Mishra N; Kaur J
    Int J Biol Macromol; 2016 Jul; 88():507-14. PubMed ID: 27083848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis.
    Rathi PC; Fulton A; Jaeger KE; Gohlke H
    PLoS Comput Biol; 2016 Mar; 12(3):e1004754. PubMed ID: 27003415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the thermostability of lipase Lip2 from Yarrowia lipolytica.
    Wen S; Tan T; Zhao H
    J Biotechnol; 2012 Dec; 164(2):248-53. PubMed ID: 22982168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introduction of a stabilizing 10 residue beta-hairpin in Bacillus subtilis neutral protease.
    Eijsink VG; Vriend G; van den Burg B; van der Zee JR; Veltman OR; Stulp BK; Venema G
    Protein Eng; 1992 Mar; 5(2):157-63. PubMed ID: 1594570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the protein stability landscape: Bacillus subtilis lipase A as a model for detergent tolerance.
    Fulton A; Frauenkron-Machedjou VJ; Skoczinski P; Wilhelm S; Zhu L; Schwaneberg U; Jaeger KE
    Chembiochem; 2015 Apr; 16(6):930-6. PubMed ID: 25773356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: an integration of computational modeling and experimental analysis.
    Ni Z; Jin R; Chen H; Lin X
    Comput Biol Med; 2013 Nov; 43(11):1882-8. PubMed ID: 24209933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.