BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30286275)

  • 1. Emergence of New Density-Strength Scaling Law in 3D Hollow Ceramic Nanoarchitectures.
    Na YE; Shin D; Kim K; Ahn C; Jeon S; Jang D
    Small; 2018 Nov; 14(44):e1802239. PubMed ID: 30286275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of porous glass-ceramic fillers on mechanical properties of light-cured dental resin composites.
    Liu Y; Tan Y; Lei T; Xiang Q; Han Y; Huang B
    Dent Mater; 2009 Jun; 25(6):709-15. PubMed ID: 19131096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing.
    Zhao J; Xiao S; Lu X; Wang J; Weng J
    Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-strength cellular ceramic composites with 3D microarchitecture.
    Bauer J; Hengsbach S; Tesari I; Schwaiger R; Kraft O
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2453-8. PubMed ID: 24550268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture behaviors of ceramic tissue scaffolds for load bearing applications.
    Entezari A; Roohani-Esfahani SI; Zhang Z; Zreiqat H; Dunstan CR; Li Q
    Sci Rep; 2016 Jul; 6():28816. PubMed ID: 27403936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resilient 3D hierarchical architected metamaterials.
    Meza LR; Zelhofer AJ; Clarke N; Mateos AJ; Kochmann DM; Greer JR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11502-7. PubMed ID: 26330605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and deformation of three-dimensional hollow ceramic nanostructures.
    Jang D; Meza LR; Greer F; Greer JR
    Nat Mater; 2013 Oct; 12(10):893-8. PubMed ID: 23995324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Porous bioceramics reinforced by coating gelatin.
    Liu B; Lin P; Shen Y; Dong Y
    J Mater Sci Mater Med; 2008 Mar; 19(3):1203-7. PubMed ID: 17701298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.
    Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C
    J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic porous ceramic material with hierarchical architecture for thermal insulation.
    Zhao N; Mao A; Shao Z; Bai H
    Bioinspir Biomim; 2021 Dec; 17(1):. PubMed ID: 34673560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and mechanical testing of porous calcium phosphate bioceramic granules.
    Hsu YH; Turner IG; Miles AW
    J Mater Sci Mater Med; 2007 Oct; 18(10):1931-7. PubMed ID: 17554596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress.
    Le Huec JC; Schaeverbeke T; Clement D; Faber J; Le Rebeller A
    Biomaterials; 1995 Jan; 16(2):113-8. PubMed ID: 7734643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites.
    Zandinejad AA; Atai M; Pahlevan A
    Dent Mater; 2006 Apr; 22(4):382-7. PubMed ID: 16055180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ZrO2 addition on the mechanical properties of porous TiO2 bone scaffolds.
    Tiainen H; Eder G; Nilsen O; Haugen HJ
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1386-93. PubMed ID: 24364936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity.
    Hsu YH; Turner IG; Miles AW
    J Mater Sci Mater Med; 2007 Dec; 18(12):2319-29. PubMed ID: 17569009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bending strength of zirconia/porcelain functionally graded materials prepared using spark plasma sintering.
    Tsukada G; Sueyoshi H; Kamibayashi H; Tokuda M; Torii M
    J Dent; 2014 Dec; 42(12):1569-76. PubMed ID: 25280989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion.
    Elbadawi M; Shbeh M
    J Mech Behav Biomed Mater; 2018 Jan; 77():422-433. PubMed ID: 29024894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.