These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30286275)

  • 21. Preparation and characterization of 3D porous ceramic scaffolds based on portland cement for bone tissue engineering.
    Mansur AA; Mansur HS
    J Mater Sci Mater Med; 2009 Feb; 20(2):497-505. PubMed ID: 18949538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material.
    Al-Jawoosh S; Ireland A; Su B
    Dent Mater; 2018 Jul; 34(7):994-1002. PubMed ID: 29653726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics.
    Guazzato M; Albakry M; Ringer SP; Swain MV
    Dent Mater; 2004 Jun; 20(5):441-8. PubMed ID: 15081550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.
    Belli R; Geinzer E; Muschweck A; Petschelt A; Lohbauer U
    Dent Mater; 2014 Apr; 30(4):424-32. PubMed ID: 24553249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering.
    Blaker JJ; Maquet V; Jérôme R; Boccaccini AR; Nazhat SN
    Acta Biomater; 2005 Nov; 1(6):643-52. PubMed ID: 16701845
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of overglazed and polished surface finishes on the compressive fracture strength of machinable ceramic materials.
    Asai T; Kazama R; Fukushima M; Okiji T
    Dent Mater J; 2010 Nov; 29(6):661-7. PubMed ID: 21099163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conventional and novel processing methods for cellular ceramics.
    Colombo P
    Philos Trans A Math Phys Eng Sci; 2006 Jan; 364(1838):109-24. PubMed ID: 18272455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate.
    Montazeri M; Karbasi S; Foroughi MR; Monshi A; Ebrahimi-Kahrizsangi R
    J Mater Sci Mater Med; 2015 Feb; 26(2):62. PubMed ID: 25631260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical properties of mesoporous ceria nanoarchitectures.
    Sayle TX; Inkson BJ; Möbus G; Parker SC; Seal S; Sayle DC
    Phys Chem Chem Phys; 2014 Dec; 16(45):24899-912. PubMed ID: 25322448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How bone forms in large cancellous defects: critical analysis based on experimental work and literature.
    Draenert K; Draenert M; Erler M; Draenert A; Draenert Y
    Injury; 2011 Sep; 42 Suppl 2():S47-55. PubMed ID: 21742327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles.
    Hong Z; Reis RL; Mano JF
    Acta Biomater; 2008 Sep; 4(5):1297-306. PubMed ID: 18439885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics.
    Zhang Y; Zhou K; Bao Y; Zhang D
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):340-6. PubMed ID: 25428079
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced piezoelectric and mechanical properties of AlN-modified BaTiO3 composite ceramics.
    Xu D; Wang L; Li W; Wang W; Hou Y; Cao W; Feng Y; Fei W
    Phys Chem Chem Phys; 2014 Jul; 16(26):13078-85. PubMed ID: 24852079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method.
    Sadeghzade S; Shamoradi F; Emadi R; Tavangarian F
    J Mech Behav Biomed Mater; 2017 Apr; 68():1-7. PubMed ID: 28135637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.
    Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L
    Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration.
    Cui B; Li J; Wang H; Lin Y; Shen Y; Li M; Deng X; Nan C
    J Dent; 2017 Jul; 62():91-97. PubMed ID: 28526443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fracture Strength of Monolithic All-Ceramic Crowns on Titanium Implant Abutments.
    Weyhrauch M; Igiel C; Scheller H; Weibrich G; Lehmann KM
    Int J Oral Maxillofac Implants; 2016; 31(2):304-9. PubMed ID: 27004277
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and phase characterization of bioceramics prepared from tetracalcium phosphate-monetite cement and in vitro osteoblast response.
    Stulajterova R; Medvecky L; Giretova M; Sopcak T
    J Mater Sci Mater Med; 2015 May; 26(5):183. PubMed ID: 25893389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.