BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30286376)

  • 1. A material modeling approach for the effective response of planar soft tissues for efficient computational simulations.
    Zhang W; Zakerzadeh R; Zhang W; Sacks MS
    J Mech Behav Biomed Mater; 2019 Jan; 89():168-198. PubMed ID: 30286376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium.
    Avazmohammadi R; Li DS; Leahy T; Shih E; Soares JS; Gorman JH; Gorman RC; Sacks MS
    Biomech Model Mechanobiol; 2018 Feb; 17(1):31-53. PubMed ID: 28861630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A meso-scale layer-specific structural constitutive model of the mitral heart valve leaflets.
    Zhang W; Ayoub S; Liao J; Sacks MS
    Acta Biomater; 2016 Mar; 32():238-255. PubMed ID: 26712602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mesostructurally-based anisotropic continuum model for biological soft tissues--decoupled invariant formulation.
    Limbert G
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1637-57. PubMed ID: 22098866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isogeometric finite element-based simulation of the aortic heart valve: Integration of neural network structural material model and structural tensor fiber architecture representations.
    Zhang W; Rossini G; Kamensky D; Bui-Thanh T; Sacks MS
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3438. PubMed ID: 33463004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
    Fan R; Sacks MS
    J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving finite element results in modeling heart valve mechanics.
    Earl E; Mohammadi H
    Proc Inst Mech Eng H; 2018 Jul; 232(7):718-725. PubMed ID: 29879869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function.
    Aggarwal A
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1309-1327. PubMed ID: 28251368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.
    Abbasi M; Barakat MS; Vahidkhah K; Azadani AN
    J Mech Behav Biomed Mater; 2016 Sep; 62():33-44. PubMed ID: 27173827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation and validation of constitutive relations for human dermis mechanical response.
    Aldieri A; Terzini M; Bignardi C; Zanetti EM; Audenino AL
    Med Biol Eng Comput; 2018 Nov; 56(11):2083-2093. PubMed ID: 29777504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Material modeling of cardiac valve tissue: Experiments, constitutive analysis and numerical investigation.
    Heyden S; Nagler A; Bertoglio C; Biehler J; Gee MW; Wall WA; Ortiz M
    J Biomech; 2015 Dec; 48(16):4287-96. PubMed ID: 26592436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of soft tissue failure using the material point method.
    Ionescu I; Guilkey JE; Berzins M; Kirby RM; Weiss JA
    J Biomech Eng; 2006 Dec; 128(6):917-24. PubMed ID: 17154694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues.
    Menzel A; Harrysson M; Ristinmaa M
    Comput Methods Biomech Biomed Engin; 2008 Oct; 11(5):505-24. PubMed ID: 19230147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate dependent anisotropic constitutive modeling of brain tissue undergoing large deformation.
    Haldar K; Pal C
    J Mech Behav Biomed Mater; 2018 May; 81():178-194. PubMed ID: 29529589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indentation of heterogeneous soft tissue: Local constitutive parameter mapping using an inverse method and an automated rig.
    Pierrat B; MacManus DB; Murphy JG; Gilchrist MD
    J Mech Behav Biomed Mater; 2018 Feb; 78():515-528. PubMed ID: 28478915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How important is sample alignment in planar biaxial testing of anisotropic soft biological tissues? A finite element study.
    Fehervary H; Vastmans J; Vander Sloten J; Famaey N
    J Mech Behav Biomed Mater; 2018 Dec; 88():201-216. PubMed ID: 30179794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.