These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Short-Term Caloric Restriction Suppresses Cardiac Oxidative Stress and Hypertrophy Caused by Chronic Pressure Overload. Kobara M; Furumori-Yukiya A; Kitamura M; Matsumura M; Ohigashi M; Toba H; Nakata T J Card Fail; 2015 Aug; 21(8):656-66. PubMed ID: 25982824 [TBL] [Abstract][Full Text] [Related]
8. Quercetin treatment increases H de Lacerda Alexandre JV; Viana YIP; David CEB; Cunha PLO; Albuquerque AC; Varela ALN; Kowaltowski AJ; Facundo HT Naunyn Schmiedebergs Arch Pharmacol; 2021 Feb; 394(2):217-226. PubMed ID: 32930861 [TBL] [Abstract][Full Text] [Related]
9. The Role of Heme Oxygenase 1 in the Protective Effect of Caloric Restriction against Diabetic Cardiomyopathy. Waldman M; Nudelman V; Shainberg A; Zemel R; Kornwoski R; Aravot D; Peterson SJ; Arad M; Hochhauser E Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31100876 [TBL] [Abstract][Full Text] [Related]
10. Ischemic preconditioning requires increases in reactive oxygen release independent of mitochondrial K+ channel activity. Facundo HT; Carreira RS; de Paula JG; Santos CC; Ferranti R; Laurindo FR; Kowaltowski AJ Free Radic Biol Med; 2006 Feb; 40(3):469-79. PubMed ID: 16443162 [TBL] [Abstract][Full Text] [Related]
11. Preconditioning with Short-term Dietary Restriction Attenuates Cardiac Oxidative Stress and Hypertrophy Induced by Chronic Pressure Overload. Kobara M; Naseratun N; Toba H; Nakata T Nutrients; 2021 Feb; 13(3):. PubMed ID: 33652586 [TBL] [Abstract][Full Text] [Related]
12. Cytosolic, but not mitochondrial, oxidative stress is a likely contributor to cardiac hypertrophy resulting from cardiac specific GLUT4 deletion in mice. Li Y; Wende AR; Nunthakungwan O; Huang Y; Hu E; Jin H; Boudina S; Abel ED; Jalili T FEBS J; 2012 Feb; 279(4):599-611. PubMed ID: 22221582 [TBL] [Abstract][Full Text] [Related]
14. Short-term caloric restriction improves ischemic tolerance independent of opening of ATP-sensitive K+ channels in both young and aged hearts. Shinmura K; Tamaki K; Bolli R J Mol Cell Cardiol; 2005 Aug; 39(2):285-96. PubMed ID: 15878170 [TBL] [Abstract][Full Text] [Related]
15. The effect of Diazoxide on norepinephrine-induced cardiac hypertrophy, in vitro. Guven C Cell Mol Biol (Noisy-le-grand); 2018 Jul; 64(10):50-54. PubMed ID: 30084794 [TBL] [Abstract][Full Text] [Related]
16. Isorhapontigenin, a new resveratrol analog, attenuates cardiac hypertrophy via blocking signaling transduction pathways. Li HL; Wang AB; Huang Y; Liu DP; Wei C; Williams GM; Zhang CN; Liu G; Liu YQ; Hao DL; Hui RT; Lin M; Liang CC Free Radic Biol Med; 2005 Jan; 38(2):243-57. PubMed ID: 15607907 [TBL] [Abstract][Full Text] [Related]
17. Effects of long-term intermittent versus chronic calorie restriction on oxidative stress in a mouse cancer model. Cicekdal MB; Tuna BG; Charehsaz M; Cleary MP; Aydin A; Dogan S IUBMB Life; 2019 Dec; 71(12):1973-1985. PubMed ID: 31424629 [TBL] [Abstract][Full Text] [Related]
18. Apocynin prevents isoproterenol-induced cardiac hypertrophy in rat. Saleem N; Prasad A; Goswami SK Mol Cell Biochem; 2018 Aug; 445(1-2):79-88. PubMed ID: 29256115 [TBL] [Abstract][Full Text] [Related]
19. Protective effects of β-caryophyllene on mitochondrial damage and cardiac hypertrophy pathways in isoproterenol-induced myocardial infarcted rats. Yovas A; Stanely SP; Ponnian SMP Eur J Pharmacol; 2023 Aug; 952():175785. PubMed ID: 37207967 [TBL] [Abstract][Full Text] [Related]
20. The effects of dietary restriction on oxidative stress in rodents. Walsh ME; Shi Y; Van Remmen H Free Radic Biol Med; 2014 Jan; 66():88-99. PubMed ID: 23743291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]