These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 30286815)
1. Field evaluation of a novel UV water disinfection system for use in underserved rural communities. Younis BA; Mahoney LE; Yao S Water Environ Res; 2019 Jan; 91(1):75-82. PubMed ID: 30286815 [TBL] [Abstract][Full Text] [Related]
2. Turbidity composition and the relationship with microbial attachment and UV inactivation efficacy. Farrell C; Hassard F; Jefferson B; Leziart T; Nocker A; Jarvis P Sci Total Environ; 2018 May; 624():638-647. PubMed ID: 29272833 [TBL] [Abstract][Full Text] [Related]
3. A new continuous-flow solar water disinfection system inactivating cysts of Acanthamoeba castellanii, and bacteria. Chaúque BJM; Benetti AD; Corção G; Silva CE; Gonçalves RF; Rott MB Photochem Photobiol Sci; 2021 Jan; 20(1):123-137. PubMed ID: 33721244 [TBL] [Abstract][Full Text] [Related]
4. Innovative microbial water quality management in water distribution systems using in-pipe hydropowered UV disinfection: envisioning futuristic water-energy systems. Ma D; Belloni C; Hull NM Environ Technol; 2024 Jul; ():1-17. PubMed ID: 39010788 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of ultraviolet (UV-C) light treatment for microbial inactivation in agricultural waters with different levels of turbidity. Adhikari A; Parraga Estrada KJ; Chhetri VS; Janes M; Fontenot K; Beaulieu JC Food Sci Nutr; 2020 Feb; 8(2):1237-1243. PubMed ID: 32148829 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the 20L SODIS bucket household water treatment technology under field conditions in rural Malawi. Brockliss S; Luwe K; Ferrero G; Morse T Int J Hyg Environ Health; 2022 Mar; 240():113913. PubMed ID: 34971863 [TBL] [Abstract][Full Text] [Related]
7. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment. Lyon BA; Dotson AD; Linden KG; Weinberg HS Water Res; 2012 Oct; 46(15):4653-64. PubMed ID: 22763290 [TBL] [Abstract][Full Text] [Related]
8. Heuristic optimization of a continuous flow point-of-use UV-LED disinfection reactor using computational fluid dynamics. Jenny RM; Jasper MN; Simmons OD; Shatalov M; Ducoste JJ Water Res; 2015 Oct; 83():310-8. PubMed ID: 26179637 [TBL] [Abstract][Full Text] [Related]
9. Water Disinfection in Rural Areas Demands Unconventional Solar Technologies. Chu C; Ryberg EC; Loeb SK; Suh MJ; Kim JH Acc Chem Res; 2019 May; 52(5):1187-1195. PubMed ID: 30943006 [TBL] [Abstract][Full Text] [Related]
10. Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination. Nelson KY; McMartin DW; Yost CK; Runtz KJ; Ono T Environ Sci Pollut Res Int; 2013 Aug; 20(8):5441-8. PubMed ID: 23423870 [TBL] [Abstract][Full Text] [Related]
11. Peracetic acid (PAA) and low-pressure ultraviolet (LP-UV) inactivation of Coxsackievirus B3 (CVB3) in municipal wastewater individually and concurrently. Kibbee R; Örmeci B Water Res; 2020 Sep; 183():116048. PubMed ID: 32668349 [TBL] [Abstract][Full Text] [Related]
12. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes. Lui GY; Roser D; Corkish R; Ashbolt NJ; Stuetz R Sci Total Environ; 2016 May; 553():626-635. PubMed ID: 26967007 [TBL] [Abstract][Full Text] [Related]
13. Effect of turbidity on water disinfection by chlorination with the emphasis on humic acids and chalk. Léziart T; Dutheil de la Rochere PM; Cheswick R; Jarvis P; Nocker A Environ Technol; 2019 May; 40(13):1734-1743. PubMed ID: 30777799 [TBL] [Abstract][Full Text] [Related]
14. Impact of iron particles in groundwater on the UV inactivation of bacteriophages MS2 and T4. Templeton MR; Andrews RC; Hofmann R J Appl Microbiol; 2006 Sep; 101(3):732-41. PubMed ID: 16907824 [TBL] [Abstract][Full Text] [Related]
15. Field efficacy evaluation and post-treatment contamination risk assessment of an ultraviolet disinfection and safe storage system. Reygadas F; Gruber JS; Ray I; Nelson KL Water Res; 2015 Nov; 85():74-84. PubMed ID: 26302217 [TBL] [Abstract][Full Text] [Related]
16. Decentralized solar-powered drinking water ozonation in Western Kenya: an evaluation of disinfection efficacy. Hendrickson C; Oremo J; Akello OO; Bunde S; Rayola I; Akello D; Akwiri D; Park SJ; Dorevitch S Gates Open Res; 2020; 4():56. PubMed ID: 33210079 [No Abstract] [Full Text] [Related]
17. UVC inactivation of MS2-phage in drinking water - Modelling and field testing. Baldasso V; Lubarsky H; Pichel N; Turolla A; Antonelli M; Hincapie M; Botero L; Reygadas F; Galdos-Balzategui A; Byrne JA; Fernandez-Ibañez P Water Res; 2021 Sep; 203():117496. PubMed ID: 34399246 [TBL] [Abstract][Full Text] [Related]
18. Removal of particle-associated bacteriophages by dual-media filtration at different filter cycle stages and impacts on subsequent UV disinfection. Templeton MR; Andrews RC; Hofmann R Water Res; 2007 Jun; 41(11):2393-406. PubMed ID: 17433406 [TBL] [Abstract][Full Text] [Related]
19. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water. Sholtes KA; Lowe K; Walters GW; Sobsey MD; Linden KG; Casanova LM Environ Technol; 2016 Sep; 37(17):2183-8. PubMed ID: 26888599 [TBL] [Abstract][Full Text] [Related]
20. A novel fiber optical device for ultraviolet disinfection of water. Lu G; Li C; Zheng Y; Zhang Q; Peng J; Fu M J Photochem Photobiol B; 2008 Jul; 92(1):42-46. PubMed ID: 18538579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]