These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30287832)

  • 1. The endless visuomotor calibration of reach-to-grasp actions.
    Volcic R; Domini F
    Sci Rep; 2018 Oct; 8(1):14803. PubMed ID: 30287832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of visual and haptic feedback on grasping movements.
    Bozzacchi C; Volcic R; Domini F
    J Neurophysiol; 2014 Dec; 112(12):3189-96. PubMed ID: 25231616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grasping in absence of feedback: systematic biases endure extensive training.
    Bozzacchi C; Volcic R; Domini F
    Exp Brain Res; 2016 Jan; 234(1):255-65. PubMed ID: 26449965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gender differences in non-standard mapping tasks: A kinematic study using pantomimed reach-to-grasp actions.
    Copley-Mills J; Connolly JD; Cavina-Pratesi C
    Cortex; 2016 Sep; 82():244-254. PubMed ID: 27410715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some binocular advantages for planning reach, but not grasp, components of prehension.
    Grant S; Conway ML
    Exp Brain Res; 2019 May; 237(5):1239-1255. PubMed ID: 30850853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grasping adjustments to haptic, visual, and visuo-haptic object perturbations are contingent on the sensory modality.
    Camponogara I; Volcic R
    J Neurophysiol; 2019 Dec; 122(6):2614-2620. PubMed ID: 31693442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibrating grasp size and reach distance: interactions reveal integral organization of reaching-to-grasp movements.
    Coats R; Bingham GP; Mon-Williams M
    Exp Brain Res; 2008 Aug; 189(2):211-20. PubMed ID: 18493753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haptic feedback attenuates illusory bias in pantomime-grasping: evidence for a visuo-haptic calibration.
    Chan J; Heath M
    Exp Brain Res; 2017 Apr; 235(4):1041-1051. PubMed ID: 28070622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DF's visual brain in action: the role of tactile cues.
    Whitwell RL; Milner AD; Cavina-Pratesi C; Byrne CM; Goodale MA
    Neuropsychologia; 2014 Mar; 55():41-50. PubMed ID: 24300664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pantomime-grasping: the 'return' of haptic feedback supports the absolute specification of object size.
    Davarpanah Jazi S; Yau M; Westwood DA; Heath M
    Exp Brain Res; 2015 Jul; 233(7):2029-40. PubMed ID: 25869741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grasp aperture corrections in reach-to-grasp movements do not reliably alter size perception.
    van Polanen V
    PLoS One; 2021; 16(9):e0248084. PubMed ID: 34520478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action-perception theory.
    Kuntz JR; Karl JM; Doan JB; Whishaw IQ
    Exp Brain Res; 2018 Apr; 236(4):1091-1103. PubMed ID: 29441469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple distance cues do not prevent systematic biases in reach to grasp movements.
    Kopiske KK; Bozzacchi C; Volcic R; Domini F
    Psychol Res; 2019 Feb; 83(1):147-158. PubMed ID: 30259095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Independent control of the digits predicts an apparent hierarchy of visuomotor channels in grasping.
    Smeets JB; Brenner E; Biegstraaten M
    Behav Brain Res; 2002 Nov; 136(2):427-32. PubMed ID: 12429404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Visuomotor Corrective Responses during Transport of Hand-Held Objects Incorporate Novel Object Dynamics.
    Diamond JS; Nashed JY; Johansson RS; Wolpert DM; Flanagan JR
    J Neurosci; 2015 Jul; 35(29):10572-80. PubMed ID: 26203151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions.
    Cavina-Pratesi C; Connolly JD; Monaco S; Figley TD; Milner AD; Schenk T; Culham JC
    Cortex; 2018 Jan; 98():128-148. PubMed ID: 28668221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of illusory size on force production when grasping objects.
    Westwood DA; Dubrowski A; Carnahan H; Roy EA
    Exp Brain Res; 2000 Dec; 135(4):535-43. PubMed ID: 11156317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.