These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30287832)

  • 21. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.
    Whitwell RL; Milner AD; Cavina-Pratesi C; Barat M; Goodale MA
    Vision Res; 2015 May; 110(Pt B):265-76. PubMed ID: 25199609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What Is the Nature of the Reach and Grasp Deficit in Wet Age-related Macular Degeneration?
    Corveleyn X; Lenoble Q; Szaffarczyk S; Tran THC; Boucart M
    Optom Vis Sci; 2018 Mar; 95(3):171-182. PubMed ID: 29424830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration.
    Hosang S; Chan J; Davarpanah Jazi S; Heath M
    Exp Brain Res; 2016 Apr; 234(4):945-54. PubMed ID: 26680769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations.
    Freud E; Macdonald SN; Chen J; Quinlan DJ; Goodale MA; Culham JC
    Cortex; 2018 Jan; 98():34-48. PubMed ID: 28431740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effects of delay on the kinematics of grasping.
    Hu Y; Eagleson R; Goodale MA
    Exp Brain Res; 1999 May; 126(1):109-16. PubMed ID: 10333011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Object grasping using the minimum variance model.
    Simmons G; Demiris Y
    Biol Cybern; 2006 May; 94(5):393-407. PubMed ID: 16479397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of vision in aperture closure control during reach-to-grasp movements.
    Rand MK; Lemay M; Squire LM; Shimansky YP; Stelmach GE
    Exp Brain Res; 2007 Aug; 181(3):447-60. PubMed ID: 17476491
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Visuomotor priming of action preparation and motor programming is similar in visually guided and memory-guided actions.
    Seegelke C; Güldenpenning I; Dettling J; Schack T
    Neuropsychologia; 2016 Oct; 91():1-8. PubMed ID: 27477631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Error correction and spatial generalization in human grasp control.
    Cesanek E; Domini F
    Neuropsychologia; 2017 Nov; 106():112-122. PubMed ID: 28958908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants.
    Karl JM; Wilson AM; Bertoli ME; Shubear NS
    Exp Brain Res; 2018 Aug; 236(8):2185-2207. PubMed ID: 29797280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human grasp point selection.
    Kleinholdermann U; Franz VH; Gegenfurtner KR
    J Vis; 2013 Jul; 13(8):. PubMed ID: 23887046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dynamics of sensorimotor calibration in reaching-to-grasp movements.
    Bingham GP; Mon-Williams MA
    J Neurophysiol; 2013 Dec; 110(12):2857-62. PubMed ID: 24068760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic adjustments toward unseen visual targets during grasping movements.
    Chen Z; Saunders JA
    Exp Brain Res; 2016 Jul; 234(7):2091-2103. PubMed ID: 26979436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disentangling Representations of Object and Grasp Properties in the Human Brain.
    Fabbri S; Stubbs KM; Cusack R; Culham JC
    J Neurosci; 2016 Jul; 36(29):7648-62. PubMed ID: 27445143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. When perception trips action! The increase in the perceived size of both hand and target matters in reaching and grasping movements.
    Ambron E; Schettino LF; Coyle M; Jax S; Coslett HB
    Acta Psychol (Amst); 2017 Oct; 180():160-168. PubMed ID: 28957732
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grasping trajectories in a virtual environment adhere to Weber's law.
    Ozana A; Berman S; Ganel T
    Exp Brain Res; 2018 Jun; 236(6):1775-1787. PubMed ID: 29663023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Grasping future events: explicit knowledge of the availability of visual feedback fails to reliably influence prehension.
    Whitwell RL; Lambert LM; Goodale MA
    Exp Brain Res; 2008 Jul; 188(4):603-11. PubMed ID: 18443765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Saccadic updating of object orientation for grasping movements.
    Selen LP; Medendorp WP
    Vision Res; 2011 Apr; 51(8):898-907. PubMed ID: 21232550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparison of the reach-to-grasp movement between children and adults: a kinematic study.
    Zoia S; Pezzetta E; Blason L; Scabar A; Carrozzi M; Bulgheroni M; Castiello U
    Dev Neuropsychol; 2006; 30(2):719-38. PubMed ID: 16995833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study.
    Fogassi L; Gallese V; Buccino G; Craighero L; Fadiga L; Rizzolatti G
    Brain; 2001 Mar; 124(Pt 3):571-86. PubMed ID: 11222457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.