BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30287842)

  • 1. Design, Construction and Validation of an Electrical Impedance Probe with Contact Force and Temperature Sensors Suitable for in-vivo Measurements.
    Ruiz-Vargas A; Ivorra A; Arkwright JW
    Sci Rep; 2018 Oct; 8(1):14818. PubMed ID: 30287842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance spectroscopy measurements as a tool for distinguishing different luminal content during bolus transit studies.
    Ruiz-Vargas A; Mohd Rosli R; Ivorra A; Arkwright JW
    Neurogastroenterol Motil; 2018 Jun; 30(6):e13274. PubMed ID: 29316025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the Effect of Contact Pressure on Bioimpedance Measurements.
    Ruiz-Vargas A; Ivorra A; Arkwright JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4949-4952. PubMed ID: 30441453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.
    Kaufmann S; Malhotra A; Ardelt G; Ryschka M
    Physiol Meas; 2014 Jun; 35(6):1163-80. PubMed ID: 24845882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Thorax Simulator for Complex Dynamic Bioimpedance Measurements With Textile Electrodes.
    Ulbrich M; Muhlsteff J; Teichmann D; Leonhardt S; Walter M
    IEEE Trans Biomed Circuits Syst; 2015 Jun; 9(3):412-20. PubMed ID: 25148671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies.
    Dai Y; Du J; Yang Q; Zhang J
    Bioelectromagnetics; 2014 Sep; 35(6):385-95. PubMed ID: 24764269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Four-Channel Electrical Impedance Spectroscopy Module for Cortisol Biosensing in Sweat-Based Wearable Applications.
    Sankhala D; Muthukumar S; Prasad S
    SLAS Technol; 2018 Dec; 23(6):529-539. PubMed ID: 29447045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of electrical impedance in different ex-vivo tissues.
    Meroni D; Bovio D; Frisoli PA; Aliverti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2311-2314. PubMed ID: 28268788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel approach of processing electrical bioimpedance data using differential impedance analysis.
    Sanchez B; Bandarenka AS; Vandersteen G; Schoukens J; Bragos R
    Med Eng Phys; 2013 Sep; 35(9):1349-57. PubMed ID: 23601379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of (reversible) myocardial ischemic injury by means of electrical bioimpedance.
    Mellert F; Winkler K; Schneider C; Dudykevych T; Welz A; Osypka M; Gersing E; Preusse CJ
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1511-8. PubMed ID: 20595084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical impedance spectroscopy for prostate cancer diagnosis.
    Mishra V; Bouayad H; Schned A; Heaney J; Halter RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3258-61. PubMed ID: 23366621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some early results related to electrical impedance of normal and abnormal gastric tissue.
    Keshtkar A; Salehnia Z; Somi MH; Eftekharsadat AT
    Phys Med; 2012 Jan; 28(1):19-24. PubMed ID: 21334938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic induction spectroscopy (MIS)-probe design for cervical tissue measurements.
    Wang JY; Healey T; Barker A; Brown B; Monk C; Anumba D
    Physiol Meas; 2017 May; 38(5):729-744. PubMed ID: 28448273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostate Cancer Detection Using Composite Impedance Metric.
    Khan S; Mahara A; Hyams ES; Schned AR; Halter RJ
    IEEE Trans Med Imaging; 2016 Dec; 35(12):2513-2523. PubMed ID: 27305670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Drop-in EBI Sensor Probe for Abnormal Tissue Detection in Minimally Invasive Surgery.
    Zhu G; Zhou L; Wang S; Lin P; Guo J; Cai S; Xiong X; Jiang X; Cheng Z
    J Electr Bioimpedance; 2020 Jan; 11(1):87-95. PubMed ID: 33584908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel estimation of the electrical bioimpedance using the local polynomial method. Application to in vivo real-time myocardium tissue impedance characterization during the cardiac cycle.
    Sanchez B; Schoukens J; Bragos R; Vandersteen G
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3376-85. PubMed ID: 21878408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Textrode functional straps for bioimpedance measurements--experimental results for body composition analysis.
    Márquez JC; Seoane F; Lindecrantz K
    Eur J Clin Nutr; 2013 Jan; 67 Suppl 1():S22-7. PubMed ID: 23299868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wideband Fully-Programmable Dual-Mode CMOS Analogue Front-End for Electrical Impedance Spectroscopy.
    Valente V; Demosthenous A
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27463721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Feasibility of a Smart Surgical Probe for Verification of IRE Treatments Using Electrical Impedance Spectroscopy.
    Bonakdar M; Latouche EL; Mahajan RL; Davalos RV
    IEEE Trans Biomed Eng; 2015 Nov; 62(11):2674-84. PubMed ID: 26057529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skin-electrode contact area in electrical bioimpedance spectroscopy. Influence in total body composition assessment.
    Marquez JC; Seoane F; Lindecrantz K
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1867-70. PubMed ID: 22254694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.