BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3028791)

  • 21. Interaction of ras oncogene product p21 with guanine nucleotides.
    Hoshino M; Clanton DJ; Shih TY; Kawakita M; Hattori S
    J Biochem; 1987 Sep; 102(3):503-11. PubMed ID: 3323191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The binding of guanine nucleotide to N-ras p21--a phosphorous and proton magnetic resonance study.
    Grand RJ; Levine BA; Byrd PJ; Gallimore PH
    Oncogene; 1989 Mar; 4(3):355-61. PubMed ID: 2649849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical properties of Ha-ras encoded p21 mutants and mechanism of the autophosphorylation reaction.
    John J; Frech M; Wittinghofer A
    J Biol Chem; 1988 Aug; 263(24):11792-9. PubMed ID: 3042780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli.
    Jagath JR; Rodnina MV; Lentzen G; Wintermeyer W
    Biochemistry; 1998 Nov; 37(44):15408-13. PubMed ID: 9799502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stereochemical control over Mn(II)-thio versus Mn(II)-oxy coordination in adenosine 5'-O-(1-thiodiphosphate) complexes at the active site of creatine kinase.
    Smithers GW; Sammons RD; Goodhart PJ; LoBrutto R; Reed GH
    Biochemistry; 1989 Feb; 28(4):1597-604. PubMed ID: 2541758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Equilibrium and kinetic study of the conformational transition toward the active state of p21Ha-ras, induced by the binding of BeF3- to the GDP-bound state, in the absence of GTPase-activating proteins.
    Díaz JF; Sillen A; Engelborghs Y
    J Biol Chem; 1997 Sep; 272(37):23138-43. PubMed ID: 9287316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regeneration of the GTP-bound from the GDP-bound form of human and yeast ras proteins by nucleotide exchange. Stimulatory effect of organic and inorganic polyphosphates.
    De Vendittis E; Zahn R; Fasano O
    Eur J Biochem; 1986 Dec; 161(2):473-8. PubMed ID: 3536515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binding of guanine nucleotides and Mg2+ to tubulin with a nucleotide-depleted exchangeable site.
    Mejillano MR; Himes RH
    Arch Biochem Biophys; 1991 Dec; 291(2):356-62. PubMed ID: 1952949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH-dependent perturbation of Ras-guanine nucleotide interactions and Ras guanine nucleotide exchange.
    Heo J; Gao G; Campbell SL
    Biochemistry; 2004 Aug; 43(31):10102-11. PubMed ID: 15287738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen bond interactions of G proteins with the guanine ring moiety of guanine nucleotides.
    Weng G; Chen CX; Balogh-Nair V; Callender R; Manor D
    Protein Sci; 1994 Jan; 3(1):22-9. PubMed ID: 8142894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformation of guanosine 5'-diphosphate as bound to a human c-Ha-ras mutant protein: a nuclear Overhauser effect study.
    Ha JM; Ito Y; Kawai G; Miyazawa T; Miura K; Ohtsuka E; Noguchi S; Nishimura S; Yokoyama S
    Biochemistry; 1989 Oct; 28(21):8411-6. PubMed ID: 2690941
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of the six ligands to manganese(II) in transition-state-analogue complexes of creatine kinase: oxygen-17 superhyperfine coupling from selectively labeled ligands.
    Reed GH; Leyh TS
    Biochemistry; 1980 Nov; 19(24):5472-80. PubMed ID: 6257280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model.
    Zhang B; Zhang Y; Shacter E; Zheng Y
    Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase.
    Grisham CM; Mildvan AS
    J Supramol Struct; 1975; 3(3):304-13. PubMed ID: 171521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton NMR studies of transforming and nontransforming H-ras p21 mutants.
    Schlichting I; John J; Frech M; Chardin P; Wittinghofer A; Zimmermann H; Rösch P
    Biochemistry; 1990 Jan; 29(2):504-11. PubMed ID: 2405906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mg2+ dependence of guanine nucleotide binding to tubulin.
    Correia JJ; Baty LT; Williams RC
    J Biol Chem; 1987 Dec; 262(36):17278-84. PubMed ID: 2826416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of kirromycin on the metal ion coordination in complexes of elongation factor Tu from Bacillus stearothermophilus as inferred from the 17O-55Mn superhyperfine interaction.
    Kalbitzer HR; Wittinghofer A
    Biochim Biophys Acta; 1991 Jun; 1078(2):133-8. PubMed ID: 1648403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The frozen solution structure of p21 ras determined by ESEEM spectroscopy reveals weak coordination of Thr35 to the active site metal ion.
    Farrar CT; Halkides CJ; Singel DJ
    Structure; 1997 Aug; 5(8):1055-66. PubMed ID: 9309221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Affinity labeling of ras oncogene product p21 with guanosine diphospho- and triphosphopyridoxals.
    Ohmi N; Hoshino M; Tagaya M; Fukui T; Kawakita M; Hattori S
    J Biol Chem; 1988 Oct; 263(28):14261-6. PubMed ID: 3139654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of the oxalate-ATP complex with pyruvate kinase: ATP as a bridging ligand for the two divalent cations.
    Lodato DT; Reed GH
    Biochemistry; 1987 Apr; 26(8):2243-50. PubMed ID: 3040085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.