These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30288246)

  • 1. Carrier-doping as a tool to probe the electronic structure and multi-carrier recombination dynamics in heterostructured colloidal nanocrystals.
    Ding T; Liang G; Wang J; Wu K
    Chem Sci; 2018 Sep; 9(36):7253-7260. PubMed ID: 30288246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of band offsets in heterostructured colloidal nanorods using scanning tunneling spectroscopy.
    Steiner D; Dorfs D; Banin U; Della Sala F; Manna L; Millo O
    Nano Lett; 2008 Sep; 8(9):2954-8. PubMed ID: 18690751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure/Property Relations in "Giant" Semiconductor Nanocrystals: Opportunities in Photonics and Electronics.
    Navarro-Pardo F; Zhao H; Wang ZM; Rosei F
    Acc Chem Res; 2018 Mar; 51(3):609-618. PubMed ID: 29260851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier relaxation dynamics in type-II ZnO/CdSe quantum dot heterostructures.
    Verma S; Ghosh HN
    Phys Chem Chem Phys; 2017 Sep; 19(36):24896-24902. PubMed ID: 28869643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between Exciton Dissociation and Slow Recombination within ZnSe/CdS and CdSe/CdS Dot-in-Rod Heterostructures.
    Grennell AN; Utterback JK; Pearce OM; Wilker MB; Dukovic G
    Nano Lett; 2017 Jun; 17(6):3764-3774. PubMed ID: 28534406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of interface-potential smoothness and wavefunction delocalization on Auger recombination in colloidal CdSe-based core/shell quantum dots.
    Hou X; Li Y; Qin H; Peng X
    J Chem Phys; 2019 Dec; 151(23):234703. PubMed ID: 31864257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric Control of the Exciton Wave Function in Colloidal CdSe/CdS Nanocrystals.
    Segarra C; Climente JI; Polovitsyn A; Rajadell F; Moreels I; Planelles J
    J Phys Chem Lett; 2016 Jun; 7(12):2182-8. PubMed ID: 27225599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals.
    Bussian DA; Crooker SA; Yin M; Brynda M; Efros AL; Klimov VI
    Nat Mater; 2009 Jan; 8(1):35-40. PubMed ID: 19079242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bandgap Engineering of Indium Phosphide-Based Core/Shell Heterostructures Through Shell Composition and Thickness.
    Toufanian R; Piryatinski A; Mahler AH; Iyer R; Hollingsworth JA; Dennis AM
    Front Chem; 2018; 6():567. PubMed ID: 30515380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biexciton Auger Recombination in CdSe/CdS Core/Shell Semiconductor Nanocrystals.
    Vaxenburg R; Rodina A; Lifshitz E; L Efros A
    Nano Lett; 2016 Apr; 16(4):2503-11. PubMed ID: 26950398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small bright charged colloidal quantum dots.
    Qin W; Liu H; Guyot-Sionnest P
    ACS Nano; 2014 Jan; 8(1):283-91. PubMed ID: 24350673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.
    Wu K; Lim J; Klimov VI
    ACS Nano; 2017 Aug; 11(8):8437-8447. PubMed ID: 28723072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.
    Wu K; Song N; Liu Z; Zhu H; Rodríguez-Córdoba W; Lian T
    J Phys Chem A; 2013 Aug; 117(32):7561-70. PubMed ID: 23639000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band-Edge Energy Levels of Dynamic Excitons in Cube-Shaped CdSe/CdS Core/Shell Nanocrystals.
    Lei H; Liu S; Li J; Li C; Qin H; Peng X
    ACS Nano; 2023 Nov; 17(21):21962-21972. PubMed ID: 37901990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of biexciton auger recombination in CdSe/CdS dot/rods: role of the electronic structure in the carrier dynamics.
    Zavelani-Rossi M; Lupo MG; Tassone F; Manna L; Lanzani G
    Nano Lett; 2010 Aug; 10(8):3142-50. PubMed ID: 20698629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auger Recombination Lifetime Scaling for Type I and Quasi-Type II Core/Shell Quantum Dots.
    Philbin JP; Rabani E
    J Phys Chem Lett; 2020 Jul; 11(13):5132-5138. PubMed ID: 32513003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of exciton fine structure and hole trapping on the hole state filling effect in the transient absorption spectra of CdSe quantum dots.
    He S; Li Q; Jin T; Lian T
    J Chem Phys; 2022 Feb; 156(5):054704. PubMed ID: 35135264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Structure and Excited State Dynamics of Cadmium Chalcogenide Nanorods.
    Shulenberger KE; Jilek MR; Sherman SJ; Hohman BT; Dukovic G
    Chem Rev; 2023 Apr; 123(7):3852-3903. PubMed ID: 36881852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into strain effects on band alignment shifts, carrier localization and recombination kinetics in CdTe/CdS core/shell quantum dots.
    Jing L; Kershaw SV; Kipp T; Kalytchuk S; Ding K; Zeng J; Jiao M; Sun X; Mews A; Rogach AL; Gao M
    J Am Chem Soc; 2015 Feb; 137(5):2073-84. PubMed ID: 25594869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.