BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30288889)

  • 21. Skeletal muscle Na(+)-K(+)-ATPase and K+ homeostasis during exercise: effects of short-term training.
    McCutcheon LJ; Geor RJ; Shen H
    Equine Vet J Suppl; 1999 Jul; (30):303-10. PubMed ID: 10659273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na
    McKenna MJ; Renaud JM; Ørtenblad N; Overgaard K
    Eur J Appl Physiol; 2024 Mar; 124(3):681-751. PubMed ID: 38206444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake.
    Leppik JA; Aughey RJ; Medved I; Fairweather I; Carey MF; McKenna MJ
    J Appl Physiol (1985); 2004 Oct; 97(4):1414-23. PubMed ID: 15155714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of different magnitudes of cyclic stretch on Na+-K+-ATPase in skeletal muscle cells in vitro.
    Yuan X; Lin Z; Luo S; Ji G; Yuan C; Wu Y
    J Cell Physiol; 2007 Aug; 212(2):509-18. PubMed ID: 17458903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of 2-wk intensified training and inactivity on muscle Na+-K+ pump expression, phospholemman (FXYD1) phosphorylation, and performance in soccer players.
    Thomassen M; Christensen PM; Gunnarsson TP; Nybo L; Bangsbo J
    J Appl Physiol (1985); 2010 Apr; 108(4):898-905. PubMed ID: 20133439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptations in the muscle cell to training: role of the Na+-K+-Atpase.
    Green HJ
    Can J Appl Physiol; 2000 Jun; 25(3):204-16. PubMed ID: 10932038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K +ATPase activity in well-trained athletes.
    Aughey RJ; Clark SA; Gore CJ; Townsend NE; Hahn AG; Kinsman TA; Goodman C; Chow CM; Martin DT; Hawley JA; McKenna MJ
    Eur J Appl Physiol; 2006 Oct; 98(3):299-309. PubMed ID: 16932967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of training on potassium homeostasis during exercise.
    McKenna MJ
    J Mol Cell Cardiol; 1995 Apr; 27(4):941-9. PubMed ID: 7563106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic intermittent hypoxia and incremental cycling exercise independently depress muscle in vitro maximal Na+-K+-ATPase activity in well-trained athletes.
    Aughey RJ; Gore CJ; Hahn AG; Garnham AP; Clark SA; Petersen AC; Roberts AD; McKenna MJ
    J Appl Physiol (1985); 2005 Jan; 98(1):186-92. PubMed ID: 15033968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of phospholemman and its association with Na+-K+-ATPase in skeletal muscle: effects of aging and exercise training.
    Reis J; Zhang L; Cala S; Jew KN; Mace LC; Chung L; Moore RL; Ng YC
    J Appl Physiol (1985); 2005 Oct; 99(4):1508-15. PubMed ID: 15961612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Malleability of human skeletal muscle Na(+)-K(+)-ATPase pump with short-term training.
    Green HJ; Barr DJ; Fowles JR; Sandiford SD; Ouyang J
    J Appl Physiol (1985); 2004 Jul; 97(1):143-8. PubMed ID: 15220317
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of Na
    Racine ML; Crecelius AR; Luckasen GJ; Larson DG; Dinenno FA
    J Physiol; 2018 Aug; 596(15):3371-3389. PubMed ID: 29603743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of exercise and training on phospholemman phosphorylation in human skeletal muscle.
    Benziane B; Widegren U; Pirkmajer S; Henriksson J; Stepto NK; Chibalin AV
    Am J Physiol Endocrinol Metab; 2011 Sep; 301(3):E456-66. PubMed ID: 21653224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exercise-induced regulation of phospholemman (FXYD1) in rat skeletal muscle: implications for Na+/K+-ATPase activity.
    Rasmussen MK; Kristensen M; Juel C
    Acta Physiol (Oxf); 2008 Sep; 194(1):67-79. PubMed ID: 18373741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Training-induced changes in skeletal muscle Na+-K+ pump number and isoform expression in rats with chronic heart failure.
    Helwig B; Schreurs KM; Hansen J; Hageman KS; Zbreski MG; McAllister RM; Mitchell KE; Musch TI
    J Appl Physiol (1985); 2003 Jun; 94(6):2225-36. PubMed ID: 12562669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary studies on the concentration of Na+,K(+)-ATPase in skeletal muscle of draught cattle in Mozambique: effect of sex, age and training.
    Veeneklaas RJ; Verkleij CB; van Schie B; Harun MA; Everts ME
    Trop Anim Health Prod; 2002 Sep; 34(5):431-47. PubMed ID: 12379061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissociation between changes in muscle Na+-K+-ATPase isoform abundance and activity with consecutive days of exercise and recovery.
    Green HJ; Duhamel TA; Stewart RD; Tupling AR; Ouyang J
    Am J Physiol Endocrinol Metab; 2008 Apr; 294(4):E761-7. PubMed ID: 18230697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Na+/K(+)-pump protects muscle excitability and contractility during exercise.
    Nielsen OB; Clausen T
    Exerc Sport Sci Rev; 2000 Oct; 28(4):159-64. PubMed ID: 11064849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exercise-induced hyperkalaemia can be reduced in human subjects by moderate training without change in skeletal muscle Na,K-ATPase concentration.
    Kjeldsen K; Nørgaard A; Hau C
    Eur J Clin Invest; 1990 Dec; 20(6):642-7. PubMed ID: 1964126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue.
    McKenna MJ; Bangsbo J; Renaud JM
    J Appl Physiol (1985); 2008 Jan; 104(1):288-95. PubMed ID: 17962569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.