These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30289135)

  • 41. Investigation of H2 and H2S adsorption on niobium- and copper-doped palladium surfaces.
    Ozdogan E; Wilcox J
    J Phys Chem B; 2010 Oct; 114(40):12851-8. PubMed ID: 20845969
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computational study of ethanol adsorption and reaction over rutile TiO2 (110) surfaces.
    Muir JM; Choi Y; Idriss H
    Phys Chem Chem Phys; 2012 Sep; 14(34):11910-9. PubMed ID: 22832869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. First-principles investigation of the microscopic mechanism of the physical and chemical mixed adsorption of graphene on metal surfaces.
    Zhang X; Wang S
    RSC Adv; 2019 Oct; 9(56):32712-32720. PubMed ID: 35529730
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adsorption properties of pyramidal superatomic molecules based on the structural framework of the Au
    Liu Q; Zhang M; Zhang D; Hu Y; Zhu Q; Cheng L
    Phys Chem Chem Phys; 2022 May; 24(20):12410-12418. PubMed ID: 35574969
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of S-adsorption on (111) and (100) facets of Cu nanoclusters.
    Boschen JS; Lee J; Windus TL; Evans JW; Thiel PA; Liu DJ
    J Chem Phys; 2016 Oct; 145(16):164312. PubMed ID: 27802635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical study of CCl(4) adsorption and hydrogenation on a Pt (111) surface.
    Lu G; Lan J; Li C; Wang W; Wang C
    J Phys Chem B; 2006 Dec; 110(48):24541-8. PubMed ID: 17134213
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Origin of enhanced water adsorption at <110> step edge on rutile TiO2(110) surface.
    Hong F; Ni YH; Xu WJ; Yan Y
    J Chem Phys; 2012 Sep; 137(11):114707. PubMed ID: 22998281
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantifying the origin of inter-adsorbate interactions on reactive surfaces for catalyst screening and design.
    Krishnamoorthy A; Yildiz B
    Phys Chem Chem Phys; 2015 Sep; 17(34):22227-34. PubMed ID: 26243171
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A unified picture of adsorption on transition metals through different atoms.
    Montemore MM; Medlin JW
    J Am Chem Soc; 2014 Jul; 136(26):9272-5. PubMed ID: 24931651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NO2 interaction with Au atom adsorbed on perfect and defective MgO(100) surfaces: density functional theory calculations.
    Ammar HY; Eid KhM
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6660-71. PubMed ID: 24245127
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Co-adsorption of O
    Lang SM; Bernhardt TM; Bakker JM; Yoon B; Landman U
    J Am Soc Mass Spectrom; 2019 Oct; 30(10):1895-1905. PubMed ID: 31300975
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.
    Yu M; Doak P; Tamblyn I; Neaton JB
    J Phys Chem Lett; 2013 May; 4(10):1701-6. PubMed ID: 26282981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxygen adsorption on the Al₉Co₂(001) surface: first-principles and STM study.
    Villaseca SA; Loli LN; Ledieu J; Fournée V; Gille P; Dubois JM; Gaudry E
    J Phys Condens Matter; 2013 Sep; 25(35):355003. PubMed ID: 23883551
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Charge effect in S enhanced CO adsorption: A theoretical study of CO on Au, Ag, Cu, and Pd (111) surfaces coadsorbed with S, O, Cl, and Na.
    Gan LY; Zhao YJ
    J Chem Phys; 2010 Sep; 133(9):094703. PubMed ID: 20831329
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces.
    Chen DL; Al-Saidi WA; Johnson JK
    J Phys Condens Matter; 2012 Oct; 24(42):424211. PubMed ID: 23032730
    [TBL] [Abstract][Full Text] [Related]  

  • 57. How spin state and oxidation number of transition metal atoms determine molecular adsorption: a first-principles case study for NH
    Tan HJ; Si R; Li XB; Tang ZK; Wei XL; Seriani N; Yin WJ; Gebauer R
    Phys Chem Chem Phys; 2024 Feb; 26(9):7688-7694. PubMed ID: 38372067
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Density functional theory calculations on the mononuclear non-heme iron active site of Hmd hydrogenase: role of the internal ligands in tuning external ligand binding and driving H2 heterolysis.
    Dey A
    J Am Chem Soc; 2010 Oct; 132(39):13892-901. PubMed ID: 20831194
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Scaling relationships and theory for vibrational frequencies of adsorbates on transition metal surfaces.
    Lansford JL; Mironenko AV; Vlachos DG
    Nat Commun; 2017 Nov; 8(1):1842. PubMed ID: 29184074
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coverage effects in the adsorption of H2 on Pd(100) studied by ab initio molecular dynamics simulations.
    Gross A
    J Chem Phys; 2011 Nov; 135(17):174707. PubMed ID: 22070317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.