These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30289408)

  • 21. High-resolution structure and biochemical properties of a recombinant Proteus mirabilis catalase depleted in iron.
    Andreoletti P; Sainz G; Jaquinod M; Gagnon J; Jouve HM
    Proteins; 2003 Feb; 50(2):261-71. PubMed ID: 12486720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the monofunctional heme catalase DR1998 from Deinococcus radiodurans.
    Borges PT; Frazão C; Miranda CS; Carrondo MA; Romão CV
    FEBS J; 2014 Sep; 281(18):4138-50. PubMed ID: 24975828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ascorbic acid reduction of compound I of mammalian catalases proceeds via specific binding to the NADPH binding pocket.
    Korth HG; Meier AC; Auferkamp O; Sicking W; de Groot H; Sustmann R; Kirsch M
    Biochemistry; 2012 Jun; 51(23):4693-703. PubMed ID: 22616883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A flexible lid controls access to the active site in 1,3,8-trihydroxynaphthalene reductase.
    Andersson A; Jordan D; Schneider G; Lindqvist Y
    FEBS Lett; 1997 Jan; 400(2):173-6. PubMed ID: 9001392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of the Clade 1 catalase, CatF of Pseudomonas syringae, at 1.8 A resolution.
    Carpena X; Soriano M; Klotz MG; Duckworth HW; Donald LJ; Melik-Adamyan W; Fita I; Loewen PC
    Proteins; 2003 Feb; 50(3):423-36. PubMed ID: 12557185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of phlorizin, a potent inhibitor of the Na+/D-glucose cotransporter, with the NADPH-binding site of mammalian catalases.
    Kitlar T; Döring F; Diedrich DF; Frank R; Wallmeier H; Kinne RK; Deutscher J
    Protein Sci; 1994 Apr; 3(4):696-700. PubMed ID: 8003987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-heme manganese catalase--the 'other' catalase.
    Whittaker JW
    Arch Biochem Biophys; 2012 Sep; 525(2):111-20. PubMed ID: 22198285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the functional role of a water molecule in clade 3 catalases: a proposal for the mechanism by which NADPH prevents the formation of compound II.
    Sicking W; Korth HG; de Groot H; Sustmann R
    J Am Chem Soc; 2008 Jun; 130(23):7345-56. PubMed ID: 18479132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The three-dimensional structure of catalase from Enterococcus faecalis.
    Håkansson KO; Brugna M; Tasse L
    Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1374-80. PubMed ID: 15272159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peculiar genes for thermostable bifunctional catalase-peroxidases in Chaetomium thermophilum and their molecular evolution.
    Kamlárová A; Chovanová K; Zámocký M
    Gene; 2018 Aug; 666():83-91. PubMed ID: 29738837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the oxidase activity in mammalian catalase.
    Vetrano AM; Heck DE; Mariano TM; Mishin V; Laskin DL; Laskin JD
    J Biol Chem; 2005 Oct; 280(42):35372-81. PubMed ID: 16079130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thirty years of heme catalases structural biology.
    Díaz A; Loewen PC; Fita I; Carpena X
    Arch Biochem Biophys; 2012 Sep; 525(2):102-10. PubMed ID: 22209752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-directed mutagenesis of the lower parts of the major substrate channel of yeast catalase A leads to highly increased peroxidatic activity.
    Zamocky M; Herzog C; Nykyri LM; Koller F
    FEBS Lett; 1995 Jul; 367(3):241-5. PubMed ID: 7607315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. KatB, a cyanobacterial Mn-catalase with unique active site configuration: Implications for enzyme function.
    Bihani SC; Chakravarty D; Ballal A
    Free Radic Biol Med; 2016 Apr; 93():118-29. PubMed ID: 26826576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diversity of structures and properties among catalases.
    Chelikani P; Fita I; Loewen PC
    Cell Mol Life Sci; 2004 Jan; 61(2):192-208. PubMed ID: 14745498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation of a tyrosyl radical intermediate in Proteus mirabilis catalase by directed mutagenesis and consequences for nucleotide reactivity.
    Andreoletti P; Gambarelli S; Sainz G; Stojanoff V; White C; Desfonds G; Gagnon J; Gaillard J; Jouve HM
    Biochemistry; 2001 Nov; 40(45):13734-43. PubMed ID: 11695923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First structural evidence for the mode of diffusion of aromatic ligands and ligand-induced closure of the hydrophobic channel in heme peroxidases.
    Singh AK; Singh N; Tiwari A; Sinha M; Kushwaha GS; Kaur P; Srinivasan A; Sharma S; Singh TP
    J Biol Inorg Chem; 2010 Sep; 15(7):1099-107. PubMed ID: 20461536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the structure of catalase HPII of Escherichia coli--a review.
    Loewen P
    Gene; 1996 Nov; 179(1):39-44. PubMed ID: 8955627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-function relationships in fungal large-subunit catalases.
    Díaz A; Valdés VJ; Rudiño-Piñera E; Horjales E; Hansberg W
    J Mol Biol; 2009 Feb; 386(1):218-32. PubMed ID: 19109972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Verdoheme formation in Proteus mirabilis catalase.
    Andreoletti P; Mouesca JM; Gouet P; Jaquinod M; Capeillère-Blandin C; Jouve HM
    Biochim Biophys Acta; 2009 Aug; 1790(8):741-53. PubMed ID: 19394409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.