These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30289420)

  • 1. Probing the band gap of liquid ammonia with femtosecond multiphoton ionization spectroscopy.
    Vogler T; Vöhringer P
    Phys Chem Chem Phys; 2018 Oct; 20(40):25657-25665. PubMed ID: 30289420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond two-photon ionization and solvated electron geminate recombination in liquid-to-supercritical ammonia.
    Urbanek J; Dahmen A; Torres-Alacan J; Königshoven P; Lindner J; Vöhringer P
    J Phys Chem B; 2012 Feb; 116(7):2223-33. PubMed ID: 22272761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Below-band-gap ionization of liquid-to-supercritical ammonia: geminate recombination via proton-coupled back electron transfer.
    Urbanek J; Vöhringer P
    J Phys Chem B; 2014 Jan; 118(1):265-77. PubMed ID: 24325751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical photoionization of liquid-to-supercritical ammonia: thermal effects on the valence-to-conduction band gap.
    Urbanek J; Vöhringer P
    J Phys Chem B; 2013 Jul; 117(29):8844-54. PubMed ID: 23815751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast dynamics of electrons in ammonia.
    Vöhringer P
    Annu Rev Phys Chem; 2015 Apr; 66():97-118. PubMed ID: 25493716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geminate recombination of hydrated electrons in liquid-to-supercritical water studied by ultrafast time-resolved spectroscopy.
    Kratz S; Torres-Alacan J; Urbanek J; Lindner J; Vöhringer P
    Phys Chem Chem Phys; 2010 Oct; 12(38):12169-76. PubMed ID: 20714605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent pairs and Monte-Carlo simulations of the geminate recombination of solvated electrons in liquid-to-supercritical water.
    Torres-Alacan J; Kratz S; Vöhringer P
    Phys Chem Chem Phys; 2011 Dec; 13(46):20806-19. PubMed ID: 21996942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counterion effects on the ultrafast dynamics of charge-transfer-to-solvent electrons.
    Rivas N; Moriena G; Domenianni L; Hodak JH; Marceca E
    Phys Chem Chem Phys; 2017 Dec; 19(47):31581-31591. PubMed ID: 29170768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing Optical Transitions and Carrier Recombination Dynamics within the Bulk Band Structure of Bi
    Jnawali G; Linser S; Shojaei IA; Pournia S; Jackson HE; Smith LM; Need RF; Wilson SD
    Nano Lett; 2018 Sep; 18(9):5875-5884. PubMed ID: 30106301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation-energy dependence of the mechanism for two-photon ionization of liquid H(2)O and D(2)O from 8.3 to 12.4 eV.
    Elles CG; Jailaubekov AE; Crowell RA; Bradforth SE
    J Chem Phys; 2006 Jul; 125(4):44515. PubMed ID: 16942164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic properties of liquid ammonia: a sequential molecular dynamics/quantum mechanics approach.
    Almeida TS; Coutinho K; Costa Cabral BJ; Canuto S
    J Chem Phys; 2008 Jan; 128(1):014506. PubMed ID: 18190203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distortion Correction of Low-Energy Photoelectron Spectra of Liquids Using Spectroscopic Data for Solvated Electrons.
    Yamamoto YI; Suzuki T
    J Phys Chem A; 2023 Mar; 127(11):2440-2452. PubMed ID: 36917090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time measurement of the vertical binding energy during the birth of a solvated electron.
    Stähler J; Deinert JC; Wegkamp D; Hagen S; Wolf M
    J Am Chem Soc; 2015 Mar; 137(10):3520-4. PubMed ID: 25611976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectron Spectroscopy of Benzene in the Liquid Phase and Dissolved in Liquid Ammonia.
    Schewe HC; Brezina K; Kostal V; Mason PE; Buttersack T; Stemer DM; Seidel R; Quevedo W; Trinter F; Winter B; Jungwirth P
    J Phys Chem B; 2022 Jan; 126(1):229-238. PubMed ID: 34935378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe-Salpeter equation.
    Ziaei V; Bredow T
    J Phys Condens Matter; 2018 May; 30(21):215502. PubMed ID: 29667601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength Dependence of UV Photoemission from Solvated Electrons in Bulk Water, Methanol, and Ethanol.
    Yamamoto Y; Karashima S; Adachi S; Suzuki T
    J Phys Chem A; 2016 Mar; 120(8):1153-9. PubMed ID: 26836447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy.
    Wang J; Li Q; Egerton RF
    Micron; 2007; 38(4):346-53. PubMed ID: 16938457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionization Energy of Liquid Water Revisited.
    Perry CF; Zhang P; Nunes FB; Jordan I; von Conta A; Wörner HJ
    J Phys Chem Lett; 2020 Mar; 11(5):1789-1794. PubMed ID: 31977222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron affinity of liquid water.
    Gaiduk AP; Pham TA; Govoni M; Paesani F; Galli G
    Nat Commun; 2018 Jan; 9(1):247. PubMed ID: 29339731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond relaxation dynamics of solvated electrons in liquid ammonia.
    Lindner J; Unterreiner AN; Vöhringer P
    Chemphyschem; 2006 Feb; 7(2):363-9. PubMed ID: 16463329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.