These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 30289553)
1. Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and Fusarium graminearum resistance in maize seedling roots. Zhou S; Zhang YK; Kremling KA; Ding Y; Bennett JS; Bae JS; Kim DK; Ackerman HH; Kolomiets MV; Schmelz EA; Schroeder FC; Buckler ES; Jander G New Phytol; 2019 Mar; 221(4):2096-2111. PubMed ID: 30289553 [TBL] [Abstract][Full Text] [Related]
2. Suppression of maize root diseases caused by Macrophomina phaseolina, Fusarium moniliforme and Fusarium graminearum by plant growth promoting rhizobacteria. Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS Microbiol Res; 2001; 156(3):209-23. PubMed ID: 11716210 [TBL] [Abstract][Full Text] [Related]
3. Cytological and molecular characterization of quantitative trait locus qRfg1, which confers resistance to gibberella stalk rot in maize. Ye J; Guo Y; Zhang D; Zhang N; Wang C; Xu M Mol Plant Microbe Interact; 2013 Dec; 26(12):1417-28. PubMed ID: 23902264 [TBL] [Abstract][Full Text] [Related]
4. Potential of Novel Sequence Type of Tagele SB; Kim SW; Lee HG; Lee YS Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813526 [TBL] [Abstract][Full Text] [Related]
5. Restoring (E)-β-Caryophyllene Production in a Non-producing Maize Line Compromises its Resistance against the Fungus Colletotrichum graminicola. Fantaye CA; Köpke D; Gershenzon J; Degenhardt J J Chem Ecol; 2015 Mar; 41(3):213-23. PubMed ID: 25893788 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome analysis of maize resistance to Fusarium graminearum. Liu Y; Guo Y; Ma C; Zhang D; Wang C; Yang Q BMC Genomics; 2016 Jun; 17():477. PubMed ID: 27352627 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. Kebede AZ; Johnston A; Schneiderman D; Bosnich W; Harris LJ BMC Genomics; 2018 Feb; 19(1):131. PubMed ID: 29426290 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide identification of the maize 2OGD superfamily genes and their response to Fusarium verticillioides and Fusarium graminearum. Ge C; Tang C; Zhu YX; Wang GF Gene; 2021 Jan; 764():145078. PubMed ID: 32858175 [TBL] [Abstract][Full Text] [Related]
9. Integrated analysis of transcriptomics and defense-related phytohormones to discover hub genes conferring maize Gibberella ear rot caused by Fusarium Graminearum. Yuan G; Shi J; Zeng C; Shi H; Yang Y; Zhang C; Ma T; Wu M; Jia Z; Du J; Zou C; Ma L; Pan G; Shen Y BMC Genomics; 2024 Jul; 25(1):733. PubMed ID: 39080512 [TBL] [Abstract][Full Text] [Related]
10. A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. Wang C; Yang Q; Wang W; Li Y; Guo Y; Zhang D; Ma X; Song W; Zhao J; Xu M New Phytol; 2017 Sep; 215(4):1503-1515. PubMed ID: 28722229 [TBL] [Abstract][Full Text] [Related]
12. ZmEREB92 interacts with ZmMYC2 to activate maize terpenoid phytoalexin biosynthesis upon Fusarium graminearum infection through jasmonic acid/ethylene signaling. Fu J; Wang L; Pei W; Yan J; He L; Ma B; Wang C; Zhu C; Chen G; Shen Q; Wang Q New Phytol; 2023 Feb; 237(4):1302-1319. PubMed ID: 36319608 [TBL] [Abstract][Full Text] [Related]
14. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. Lanubile A; Ferrarini A; Maschietto V; Delledonne M; Marocco A; Bellin D BMC Genomics; 2014 Aug; 15(1):710. PubMed ID: 25155950 [TBL] [Abstract][Full Text] [Related]
15. Unravelling the genetic basis of Fusarium seedling rot resistance in the MAGIC maize population: novel targets for breeding. Septiani P; Lanubile A; Stagnati L; Busconi M; Nelissen H; Pè ME; Dell'Acqua M; Marocco A Sci Rep; 2019 Apr; 9(1):5665. PubMed ID: 30952942 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens. Patiño B; Vázquez C; Manning JM; Roncero MIG; Córdoba-Cañero D; Di Pietro A; Martínez-Del-Pozo Á Int J Food Microbiol; 2018 Oct; 283():45-51. PubMed ID: 30099994 [TBL] [Abstract][Full Text] [Related]
17. Fumonisin disruption of ceramide biosynthesis in maize roots and the effects on plant development and Fusarium verticillioides-induced seedling disease. Williams LD; Glenn AE; Zimeri AM; Bacon CW; Smith MA; Riley RT J Agric Food Chem; 2007 Apr; 55(8):2937-46. PubMed ID: 17381121 [TBL] [Abstract][Full Text] [Related]
19. Fusarium graminearum Isolates from Wheat and Maize in New York Show Similar Range of Aggressiveness and Toxigenicity in Cross-Species Pathogenicity Tests. Kuhnem PR; Del Ponte EM; Dong Y; Bergstrom GC Phytopathology; 2015 Apr; 105(4):441-8. PubMed ID: 25338173 [TBL] [Abstract][Full Text] [Related]
20. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Huffaker A; Kaplan F; Vaughan MM; Dafoe NJ; Ni X; Rocca JR; Alborn HT; Teal PE; Schmelz EA Plant Physiol; 2011 Aug; 156(4):2082-97. PubMed ID: 21690302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]