These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 30289568)

  • 1. Thermal adaptation and plasticity of the plant circadian clock.
    Gil KE; Park CM
    New Phytol; 2019 Feb; 221(3):1215-1229. PubMed ID: 30289568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein quality control is essential for the circadian clock in plants.
    Gil KE; Park CM
    Plant Signal Behav; 2017 Dec; 12(12):e1407019. PubMed ID: 29172942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The circadian clock and thermal regulation in plants: novel insights into the role of positive circadian clock regulators in temperature responses.
    de Leone MJ; Yanovsky MJ
    J Exp Bot; 2024 May; 75(10):2809-2818. PubMed ID: 38373194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Roles of Circadian Clock Genes in Plant Temperature Stress Responses.
    Jang J; Lee S; Kim JI; Lee S; Kim JA
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38255990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal plasticity of the circadian clock is under nuclear and cytoplasmic control in wild barley.
    Bdolach E; Prusty MR; Faigenboim-Doron A; Filichkin T; Helgerson L; Schmid KJ; Greiner S; Fridman E
    Plant Cell Environ; 2019 Nov; 42(11):3105-3120. PubMed ID: 31272129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination of light, circadian clock with temperature: The potential mechanisms regulating chilling tolerance in rice.
    Lu X; Zhou Y; Fan F; Peng J; Zhang J
    J Integr Plant Biol; 2020 Jun; 62(6):737-760. PubMed ID: 31243851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Timing to grow: roles of clock in thermomorphogenesis.
    Zhang LL; Luo A; Davis SJ; Liu JX
    Trends Plant Sci; 2021 Dec; 26(12):1248-1257. PubMed ID: 34404586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian clock during plant development.
    Inoue K; Araki T; Endo M
    J Plant Res; 2018 Jan; 131(1):59-66. PubMed ID: 29134443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: alternate routes of entrainment optimize the alignment of the body's circadian clock network with external time.
    Husse J; Eichele G; Oster H
    Bioessays; 2015 Oct; 37(10):1119-28. PubMed ID: 26252253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. External coincidence model for hypocotyl thermomorphogenesis.
    Park YJ; Park CM
    Plant Signal Behav; 2018 Apr; 13(4):e1327498. PubMed ID: 28532231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The plant circadian clock looks like a traditional Japanese clock rather than a modern Western clock.
    Mizuno T; Yamashino T
    Plant Signal Behav; 2015; 10(12):e1087630. PubMed ID: 26382718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZEITLUPE Contributes to a Thermoresponsive Protein Quality Control System in Arabidopsis.
    Gil KE; Kim WY; Lee HJ; Faisal M; Saquib Q; Alatar AA; Park CM
    Plant Cell; 2017 Nov; 29(11):2882-2894. PubMed ID: 29061867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Arabidopsis sickle Mutant Exhibits Altered Circadian Clock Responses to Cool Temperatures and Temperature-Dependent Alternative Splicing.
    Marshall CM; Tartaglio V; Duarte M; Harmon FG
    Plant Cell; 2016 Oct; 28(10):2560-2575. PubMed ID: 27624757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beyond Arabidopsis: the circadian clock in non-model plant species.
    McClung CR
    Semin Cell Dev Biol; 2013 May; 24(5):430-6. PubMed ID: 23466287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light- and temperature-entrainable circadian clock in soybean development.
    Wang Y; Yuan L; Su T; Wang Q; Gao Y; Zhang S; Jia Q; Yu G; Fu Y; Cheng Q; Liu B; Kong F; Zhang X; Song CP; Xu X; Xie Q
    Plant Cell Environ; 2020 Mar; 43(3):637-648. PubMed ID: 31724182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sumoylation Contributes to Timekeeping and Temperature Compensation of the Plant Circadian Clock.
    Hansen LL; van den Burg HA; van Ooijen G
    J Biol Rhythms; 2017 Dec; 32(6):560-569. PubMed ID: 29172926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic loci mediating circadian clock output plasticity and crop productivity under barley domestication.
    Prusty MR; Bdolach E; Yamamoto E; Tiwari LD; Silberman R; Doron-Faigenbaum A; Neyhart JL; Bonfil D; Kashkush K; Pillen K; Smith KP; Fridman E
    New Phytol; 2021 Jun; 230(5):1787-1801. PubMed ID: 33595846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological significance of the plant circadian clock in natural field conditions.
    Izawa T
    Plant Cell Environ; 2012 Oct; 35(10):1729-41. PubMed ID: 22681566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zeitlupe senses blue-light fluence to mediate circadian timing in Arabidopsis thaliana.
    Pudasaini A; Zoltowski BD
    Biochemistry; 2013 Oct; 52(40):7150-8. PubMed ID: 24033190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Newly described components and regulatory mechanisms of circadian clock function in Arabidopsis thaliana.
    Troncoso-Ponce MA; Mas P
    Mol Plant; 2012 May; 5(3):545-53. PubMed ID: 22230762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.