These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30289726)

  • 1. Scalable Microfluidic Platform for Flexible Configuration of and Experiments with Microtissue Multiorgan Models.
    Lohasz C; Rousset N; Renggli K; Hierlemann A; Frey O
    SLAS Technol; 2019 Feb; 24(1):79-95. PubMed ID: 30289726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis.
    Kim JY; Fluri DA; Marchan R; Boonen K; Mohanty S; Singh P; Hammad S; Landuyt B; Hengstler JG; Kelm JM; Hierlemann A; Frey O
    J Biotechnol; 2015 Jul; 205():24-35. PubMed ID: 25592049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tubing-Free Microfluidic Microtissue Culture System Featuring Gradual,
    Lohasz C; Frey O; Bonanini F; Renggli K; Hierlemann A
    Front Bioeng Biotechnol; 2019; 7():72. PubMed ID: 31001529
    [No Abstract]   [Full Text] [Related]  

  • 4. Human Organs-on-Chips for Virology.
    Tang H; Abouleila Y; Si L; Ortega-Prieto AM; Mummery CL; Ingber DE; Mashaghi A
    Trends Microbiol; 2020 Nov; 28(11):934-946. PubMed ID: 32674988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.
    Kim JY; Fluri DA; Kelm JM; Hierlemann A; Frey O
    J Lab Autom; 2015 Jun; 20(3):274-82. PubMed ID: 25524491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term maintenance of a microfluidic 3D human liver sinusoid.
    Prodanov L; Jindal R; Bale SS; Hegde M; McCarty WJ; Golberg I; Bhushan A; Yarmush ML; Usta OB
    Biotechnol Bioeng; 2016 Jan; 113(1):241-6. PubMed ID: 26152452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Metabolism-Related Drug-Drug Interactions Using a Microphysiological Multitissue System.
    Lohasz C; Bonanini F; Hoelting L; Renggli K; Frey O; Hierlemann A
    Adv Biosyst; 2020 Nov; 4(11):e2000079. PubMed ID: 33073544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic chip with gravity-induced unidirectional flow for perfusion cell culture.
    Lee DW; Choi N; Sung JH
    Biotechnol Prog; 2019 Jan; 35(1):e2701. PubMed ID: 30294886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis.
    Frey O; Misun PM; Fluri DA; Hengstler JG; Hierlemann A
    Nat Commun; 2014 Jun; 5():4250. PubMed ID: 24977495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-on-chip for therapy development and fundamental science.
    Luni C; Serena E; Elvassore N
    Curr Opin Biotechnol; 2014 Feb; 25():45-50. PubMed ID: 24484880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Shelf-Stable Coating for Microfluidic Organ-on-a-Chip Using Bioinspired Catecholamine Polymers.
    Khetani S; Yong KW; Ozhukil Kollath V; Eastick E; Azarmanesh M; Karan K; Sen A; Sanati-Nezhad A
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6910-6923. PubMed ID: 31971367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human Lung Small Airway-on-a-Chip Protocol.
    Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE
    Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmentally inspired human 'organs on chips'.
    Ingber DE
    Development; 2018 May; 145(16):. PubMed ID: 29776965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pump-less, recirculating organ-on-a-chip (rOoC) platform.
    Busek M; Aizenshtadt A; Koch T; Frank A; Delon L; Martinez MA; Golovin A; Dumas C; Stokowiec J; Gruenzner S; Melum E; Krauss S
    Lab Chip; 2023 Feb; 23(4):591-608. PubMed ID: 36655405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular Microphysiological System for Modeling of Biologic Barrier Function.
    Ishahak M; Hill J; Amin Q; Wubker L; Hernandez A; Mitrofanova A; Sloan A; Fornoni A; Agarwal A
    Front Bioeng Biotechnol; 2020; 8():581163. PubMed ID: 33304889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravity-driven microfluidic device placed on a slow-tilting table enables constant unidirectional perfusion culture of human induced pluripotent stem cells.
    Limjanthong N; Tohbaru Y; Okamoto T; Okajima R; Kusama Y; Kojima H; Fujimura A; Miyazaki T; Kanamori T; Sugiura S; Ohnuma K
    J Biosci Bioeng; 2023 Feb; 135(2):151-159. PubMed ID: 36586792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed.
    Bonanini F; Kurek D; Previdi S; Nicolas A; Hendriks D; de Ruiter S; Meyer M; Clapés Cabrer M; Dinkelberg R; García SB; Kramer B; Olivier T; Hu H; López-Iglesias C; Schavemaker F; Walinga E; Dutta D; Queiroz K; Domansky K; Ronden B; Joore J; Lanz HL; Peters PJ; Trietsch SJ; Clevers H; Vulto P
    Angiogenesis; 2022 Nov; 25(4):455-470. PubMed ID: 35704148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.