These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30289766)

  • 1. Scaling of resistive random access memory devices beyond 100 nm
    Hazra P; Jinesh KB
    Nanotechnology; 2018 Dec; 29(49):495202. PubMed ID: 30289766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism underlying silicon oxide based resistive random-access memory (ReRAM).
    Chen YL; Ho MS; Lee WJ; Chung PF; Balraj B; Sivakumar C
    Nanotechnology; 2020 Apr; 31(14):145709. PubMed ID: 31846950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Grain Sizes on Programmable Memory Characteristics in Two-Dimensional Organic-Inorganic Hybrid Perovskite Memory.
    Lee D; Hwang B; Lee JS
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20225-20231. PubMed ID: 31117475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The current limit and self-rectification functionalities in the TiO
    Yoon JH; Kwon DE; Kim Y; Kwon YJ; Yoon KJ; Park TH; Shao XL; Hwang CS
    Nanoscale; 2017 Aug; 9(33):11920-11928. PubMed ID: 28786468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural phase transition and resistive switching properties of Cu
    Seo J; Kim T; Kim Y; Jeong MS; Kim EK
    Nanotechnology; 2024 Feb; 35(18):. PubMed ID: 38271739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Annealing Effect of Al2O3 Tunnel Barriers in HfO2-Based ReRAM Devices on Nonlinear Resistive Switching Characteristics.
    Park S; Cho K; Jung J; Kim S
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7569-72. PubMed ID: 26726373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin HfO2-based resistive switching memory: beyond filament and charge hopping models.
    Nakamura H; Asai Y
    Phys Chem Chem Phys; 2016 Apr; 18(13):8820-6. PubMed ID: 26975565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of Grain Boundary Effects in Sm
    Shi W; Wang L; Yang N
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films.
    Shang DS; Shi L; Sun JR; Shen BG
    Nanotechnology; 2011 Jun; 22(25):254008. PubMed ID: 21572213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films.
    Xu Z; Gao M; Yu L; Lu L; Xu X; Jiang Y
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17823-30. PubMed ID: 25245009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible resistive switching memory with a Ni/CuO x /Ni structure using an electrochemical deposition process.
    Park K; Lee JS
    Nanotechnology; 2016 Mar; 27(12):125203. PubMed ID: 26889689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform Self-rectifying Resistive Switching Behavior via Preformed Conducting Paths in a Vertical-type Ta2O5/HfO2-x Structure with a Sub-μm(2) Cell Area.
    Yoon JH; Yoo S; Song SJ; Yoon KJ; Kwon DE; Kwon YJ; Park TH; Kim HJ; Shao XL; Kim Y; Hwang CS
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18215-21. PubMed ID: 27347693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistive switching characteristics of ZnO nanowires.
    Yoo EJ; Shin IK; Yoon TS; Choi YJ; Kang CJ
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9459-64. PubMed ID: 25971083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the Resistive Switching Behavior in Starch-Based Flexible Biomemristors.
    Raeis-Hosseini N; Lee JS
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7326-32. PubMed ID: 26919221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices.
    Ambrosi E; Bricalli A; Laudato M; Ielmini D
    Faraday Discuss; 2019 Feb; 213(0):87-98. PubMed ID: 30364922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano-Ionic Solid State Resistive Memories (Re-RAM): A Review.
    Sahoo S; Prabaharan SRS
    J Nanosci Nanotechnol; 2017 Jan; 17(1):72-86. PubMed ID: 29616787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of resistive switching under confined current path distribution enabled by insertion of atomically thin defective monolayer graphene.
    Lee K; Hwang I; Lee S; Oh S; Lee D; Kim CK; Nam Y; Hong S; Yoon C; Morgan RB; Kim H; Seo S; Seo DH; Lee S; Park BH
    Sci Rep; 2015 Jul; 5():11279. PubMed ID: 26161992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of conducting filament and non-filament regions in the Ta
    Park TH; Kim HJ; Park WY; Kim SG; Choi BJ; Hwang CS
    Nanoscale; 2017 May; 9(18):6010-6019. PubMed ID: 28443901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistive switching characteristics of HfO2-based memory devices on flexible plastics.
    Han Y; Cho K; Park S; Kim S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8191-5. PubMed ID: 25958498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MoS
    Chai J; Tong S; Li C; Manzano C; Li B; Liu Y; Lin M; Wong L; Cheng J; Wu J; Lau A; Xie Q; Pennycook SJ; Medina H; Yang M; Wang S; Chi D
    Adv Mater; 2020 Oct; 32(42):e2002704. PubMed ID: 32851704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.