BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30289883)

  • 1. Suppression of droplets freezing on glass surfaces on which antifreeze polypeptides are adhered by a silane coupling agent.
    Koshio K; Arai K; Waku T; Wilson PW; Hagiwara Y
    PLoS One; 2018; 13(10):e0204686. PubMed ID: 30289883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid amyloid fibril formation by a winter flounder antifreeze protein requires specific interaction with ice.
    Dubé A; Leggiadro C; Ewart KV
    FEBS Lett; 2016 May; 590(9):1335-44. PubMed ID: 27086686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ice growth in supercooled solutions of a biological "antifreeze", AFGP 1-5: an explanation in terms of adsorption rate for the concentration dependence of the freezing point.
    Knight CA; DeVries AL
    Phys Chem Chem Phys; 2009 Jul; 11(27):5749-61. PubMed ID: 19842493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of antifreeze proteins on the ice/water interface.
    Todde G; Hovmöller S; Laaksonen A
    J Phys Chem B; 2015 Feb; 119(8):3407-13. PubMed ID: 25611783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial antifreeze polypeptides: alpha-helical peptides with KAAK motifs have antifreeze and ice crystal morphology modifying properties.
    Zhang W; Laursen RA
    FEBS Lett; 1999 Jul; 455(3):372-6. PubMed ID: 10437807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.
    Vorontsov DA; Sazaki G; Hyon SH; Matsumura K; Furukawa Y
    J Phys Chem B; 2014 Aug; 118(34):10240-9. PubMed ID: 25113284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature?
    Kar RK; Bhunia A
    J Phys Chem B; 2015 Sep; 119(35):11485-95. PubMed ID: 26287639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ice Growth Inhibition in Antifreeze Polypeptide Solution by Short-Time Solution Preheating.
    Nishi N; Miyamoto T; Waku T; Tanaka N; Hagiwara Y
    PLoS One; 2016; 11(5):e0154782. PubMed ID: 27152720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-function relationship in a winter flounder antifreeze polypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides.
    Chakrabartty A; Yang DS; Hew CL
    J Biol Chem; 1989 Jul; 264(19):11313-6. PubMed ID: 2738068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice-binding structure and mechanism of an antifreeze protein from winter flounder.
    Sicheri F; Yang DS
    Nature; 1995 Jun; 375(6530):427-31. PubMed ID: 7760940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and Evaluation of Cryoprotective Peptides from Chicken Collagen: Ice-Growth Inhibition Activity Compared to That of Type I Antifreeze Proteins in Sucrose Model Systems.
    Du L; Betti M
    J Agric Food Chem; 2016 Jun; 64(25):5232-40. PubMed ID: 27293017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.
    Olijve LL; Meister K; DeVries AL; Duman JG; Guo S; Bakker HJ; Voets IK
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3740-5. PubMed ID: 26936953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced ice melting by the snow flea antifreeze protein from molecular dynamics simulations.
    Todde G; Whitman C; Hovmöller S; Laaksonen A
    J Phys Chem B; 2014 Nov; 118(47):13527-34. PubMed ID: 25353109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic analogues of the winter flounder 'antifreeze' protein.
    Haymet AD; Ward LG; Harding MM
    FEBS Lett; 2001 Mar; 491(3):285-8. PubMed ID: 11240143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis.
    Deng G; Laursen RA
    Biochim Biophys Acta; 1998 Nov; 1388(2):305-14. PubMed ID: 9858755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insight into icing and de-icing properties of hydrophobic and hydrophilic structured surfaces based on core-shell particles.
    Chanda J; Ionov L; Kirillova A; Synytska A
    Soft Matter; 2015 Dec; 11(47):9126-34. PubMed ID: 26411650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium antifreeze peptides and the recrystallization of ice.
    Knight CA; Wen D; Laursen RA
    Cryobiology; 1995 Feb; 32(1):23-34. PubMed ID: 7697996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifreeze protein from shorthorn sculpin: identification of the ice-binding surface.
    Baardsnes J; Jelokhani-Niaraki M; Kondejewski LH; Kuiper MJ; Kay CM; Hodges RS; Davies PL
    Protein Sci; 2001 Dec; 10(12):2566-76. PubMed ID: 11714925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.