These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30290054)

  • 1. Possible role of p53/Mieap-regulated mitochondrial quality control as a tumor suppressor in human breast cancer.
    Gaowa S; Futamura M; Tsuneki M; Kamino H; Tajima JY; Mori R; Arakawa H; Yoshida K
    Cancer Sci; 2018 Dec; 109(12):3910-3920. PubMed ID: 30290054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p53/Mieap-regulated mitochondrial quality control plays an important role as a tumor suppressor in gastric and esophageal cancers.
    Sano H; Futamura M; Gaowa S; Kamino H; Nakamura Y; Yamaguchi K; Tanaka Y; Yasufuku I; Nakakami A; Arakawa H; Yoshida K
    Biochem Biophys Res Commun; 2020 Aug; 529(3):582-589. PubMed ID: 32736677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of Mieap-regulated mitochondrial quality control as a new function of tumor suppressor p53.
    Nakamura Y; Arakawa H
    Cancer Sci; 2017 May; 108(5):809-817. PubMed ID: 28222492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p53 mutation in breast cancer. Correlation with cell kinetics and cell of origin.
    Megha T; Ferrari F; Benvenuto A; Bellan C; Lalinga AV; Lazzi S; Bartolommei S; Cevenini G; Leoncini L; Tosi P
    J Clin Pathol; 2002 Jun; 55(6):461-6. PubMed ID: 12037031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mieap, a p53-inducible protein, controls mitochondrial quality by repairing or eliminating unhealthy mitochondria.
    Kitamura N; Nakamura Y; Miyamoto Y; Miyamoto T; Kabu K; Yoshida M; Futamura M; Ichinose S; Arakawa H
    PLoS One; 2011 Jan; 6(1):e16060. PubMed ID: 21264228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mieap-regulated mitochondrial quality control is frequently inactivated in human colorectal cancer.
    Kamino H; Nakamura Y; Tsuneki M; Sano H; Miyamoto Y; Kitamura N; Futamura M; Kanai Y; Taniguchi H; Shida D; Kanemitsu Y; Moriya Y; Yoshida K; Arakawa H
    Oncogenesis; 2016 Jan; 4(1):e181. PubMed ID: 26727575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The extent of proliferative and apoptotic activity in intraductal and invasive ductal breast carcinomas detected by Ki-67 labeling and terminal deoxynucleotidyl transferase-mediated digoxigenin-11-dUTP nick end labeling.
    Shen KL; Harn HJ; Ho LI; Yu CP; Chiu SC; Lee WH
    Cancer; 1998 Jun; 82(12):2373-81. PubMed ID: 9635530
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Futamura M; Tokumaru Y; Takabe K; Arakawa H; Asano Y; Mori R; Mase J; Nakakami A; Yoshida K
    Am J Cancer Res; 2021; 11(12):6060-6073. PubMed ID: 35018242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bax protein expression in DCIS of the breast in relation to invasive ductal carcinoma and other molecular markers.
    Rehman S; Crow J; Revell PA
    Pathol Oncol Res; 2000; 6(4):256-63. PubMed ID: 11173657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer.
    Moelans CB; Verschuur-Maes AH; van Diest PJ
    J Pathol; 2011 Oct; 225(2):222-31. PubMed ID: 21710692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of Protein Expression and Methylation of DAPK1 with Clinicopathological Features in Invasive Ductal Carcinoma Patients from Kashmir.
    Asiaf A; Ahmad ST; Malik AA; Aziz SA; Zargar MA
    Asian Pac J Cancer Prev; 2019 Mar; 20(3):839-848. PubMed ID: 30912402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of Her2/neu, steroid receptors (ER and PR), Ki67 and p53 in invasive mammary ductal carcinoma associated with ductal carcinoma In Situ (DCIS) Versus invasive breast cancer alone.
    Mylonas I; Makovitzky J; Jeschke U; Briese V; Friese K; Gerber B
    Anticancer Res; 2005; 25(3A):1719-23. PubMed ID: 16033090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Detection and clinical significance of Notch1 methylation in breast cancer and intraductal proliferative breast lesions].
    Zhang N; Sun ZZ; Li F; Cao YW; Zhao CX; Liang WH; Sun HP; Li HA; Fu XG
    Zhonghua Bing Li Xue Za Zhi; 2011 May; 40(5):324-9. PubMed ID: 21756827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible existence of lysosome-like organella within mitochondria and its role in mitochondrial quality control.
    Miyamoto Y; Kitamura N; Nakamura Y; Futamura M; Miyamoto T; Yoshida M; Ono M; Ichinose S; Arakawa H
    PLoS One; 2011 Jan; 6(1):e16054. PubMed ID: 21264221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RUNX3 inactivation by frequent promoter hypermethylation and protein mislocalization constitute an early event in breast cancer progression.
    Subramaniam MM; Chan JY; Soong R; Ito K; Ito Y; Yeoh KG; Salto-Tellez M; Putti TC
    Breast Cancer Res Treat; 2009 Jan; 113(1):113-21. PubMed ID: 18256927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma.
    Kang JH; Kim SJ; Noh DY; Park IA; Choe KJ; Yoo OJ; Kang HS
    Lab Invest; 2001 Apr; 81(4):573-9. PubMed ID: 11304577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical co-expression of c-erbb-2/Neu oncoprotein, altered tumour suppressor (p53) protein, EGF-R and EMA in histological subtypes of infiltrating duct carcinoma of the breast.
    Sharma BK; Ray A; Kaur S; Gupta S
    Indian J Exp Biol; 1999 Mar; 37(3):223-7. PubMed ID: 10641149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial autoimmunity and MNRR1 in breast carcinogenesis.
    Aras S; Maroun MC; Song Y; Bandyopadhyay S; Stark A; Yang ZQ; Long MP; Grossman LI; Fernández-Madrid F
    BMC Cancer; 2019 May; 19(1):411. PubMed ID: 31046734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prognostic value of apoptosis in breast cancer (pT1-pT2). A TUNEL, p53, bcl-2, bag-1 and Bax immunohistochemical study.
    Sirvent JJ; Aguilar MC; Olona M; Pelegrí A; Blázquez S; Gutiérrez C
    Histol Histopathol; 2004 Jul; 19(3):759-70. PubMed ID: 15168338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsatellite alterations on human chromosome 11 in in situ and invasive breast cancer: a microdissection microsatellite analysis and correlation with p53, ER (estrogen receptor), and PR (progesterone receptor) protein immunoreactivity.
    Shen KL; Yang LS; Hsieh HF; Chen CJ; Yu JC; Tsai NM; Harn HJ
    J Surg Oncol; 2000 Jun; 74(2):100-7. PubMed ID: 10914818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.