BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30290173)

  • 1. 3D Human Esophageal Epithelium Steps Out from hPSCs.
    Rustgi AK
    Cell Stem Cell; 2018 Oct; 23(4):460-462. PubMed ID: 30290173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Esophageal Organoids from Human Pluripotent Stem Cells Delineate Sox2 Functions during Esophageal Specification.
    Trisno SL; Philo KED; McCracken KW; Catá EM; Ruiz-Torres S; Rankin SA; Han L; Nasr T; Chaturvedi P; Rothenberg ME; Mandegar MA; Wells SI; Zorn AM; Wells JM
    Cell Stem Cell; 2018 Oct; 23(4):501-515.e7. PubMed ID: 30244869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro generation of human pluripotent stem cell derived lung organoids.
    Dye BR; Hill DR; Ferguson MA; Tsai YH; Nagy MS; Dyal R; Wells JM; Mayhew CN; Nattiv R; Klein OD; White ES; Deutsch GH; Spence JR
    Elife; 2015 Mar; 4():. PubMed ID: 25803487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructing and Deconstructing Cancers using Human Pluripotent Stem Cells and Organoids.
    Smith RC; Tabar V
    Cell Stem Cell; 2019 Jan; 24(1):12-24. PubMed ID: 30581078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating Cerebral Organoids from Human Pluripotent Stem Cells.
    Chew L; Añonuevo A; Knock E
    Methods Mol Biol; 2022; 2389():177-199. PubMed ID: 34558011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin Immunoprecipitation in Human Pluripotent Stem Cell-Derived 3D Organoids to Analyze DNA-Protein Interactions.
    Tan WX; Bok CM; Ng NHJ; Teo AKK
    Methods Mol Biol; 2022; 2429():215-232. PubMed ID: 35507164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Modeling of Esophageal Development using Human PSC-Derived Basal Progenitors Reveals a Critical Role for Notch Signaling.
    Zhang Y; Yang Y; Jiang M; Huang SX; Zhang W; Al Alam D; Danopoulos S; Mori M; Chen YW; Balasubramanian R; Chuva de Sousa Lopes SM; Serra C; Bialecka M; Kim E; Lin S; Toste de Carvalho ALR; Riccio PN; Cardoso WV; Zhang X; Snoeck HW; Que J
    Cell Stem Cell; 2018 Oct; 23(4):516-529.e5. PubMed ID: 30244870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of kidney tubular organoids from human pluripotent stem cells.
    Yamaguchi S; Morizane R; Homma K; Monkawa T; Suzuki S; Fujii S; Koda M; Hiratsuka K; Yamashita M; Yoshida T; Wakino S; Hayashi K; Sasaki J; Hori S; Itoh H
    Sci Rep; 2016 Dec; 6():38353. PubMed ID: 27982115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method.
    Hongisto H; Ilmarinen T; Vattulainen M; Mikhailova A; Skottman H
    Stem Cell Res Ther; 2017 Dec; 8(1):291. PubMed ID: 29284513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kidney Organoids: A Translational Journey.
    Morizane R; Bonventre JV
    Trends Mol Med; 2017 Mar; 23(3):246-263. PubMed ID: 28188103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin-2 induces the in vitro maturation of human pluripotent stem cell-derived intestinal organoids.
    Jung KB; Lee H; Son YS; Lee MO; Kim YD; Oh SJ; Kwon O; Cho S; Cho HS; Kim DS; Oh JH; Zilbauer M; Min JK; Jung CR; Kim J; Son MY
    Nat Commun; 2018 Aug; 9(1):3039. PubMed ID: 30072687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development.
    Kim YK; Refaeli I; Brooks CR; Jing P; Gulieva RE; Hughes MR; Cruz NM; Liu Y; Churchill AJ; Wang Y; Fu H; Pippin JW; Lin LY; Shankland SJ; Vogl AW; McNagny KM; Freedman BS
    Stem Cells; 2017 Dec; 35(12):2366-2378. PubMed ID: 28905451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development and stem cells of the esophagus.
    Zhang Y; Bailey D; Yang P; Kim E; Que J
    Development; 2021 Mar; 148(6):. PubMed ID: 33782045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating Multiple Kidney Progenitors and Cell Types from Human Pluripotent Stem Cells.
    Hariharan K; Reinke P; Kurtz A
    Methods Mol Biol; 2019; 1926():103-115. PubMed ID: 30742266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids.
    Dye BR; Dedhia PH; Miller AJ; Nagy MS; White ES; Shea LD; Spence JR
    Elife; 2016 Sep; 5():. PubMed ID: 27677847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing developmental plasticity to pattern kidney organoids.
    Bhattacharya R; Bonner MG; Musah S
    Cell Stem Cell; 2021 Apr; 28(4):587-589. PubMed ID: 33798416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human pluripotent stem cells for the modelling and treatment of respiratory diseases.
    Goldsteen PA; Yoseif C; Dolga AM; Gosens R
    Eur Respir Rev; 2021 Sep; 30(161):. PubMed ID: 34348980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stencil Micropatterning of Human Pluripotent Stem Cells for Probing Spatial Organization of Differentiation Fates.
    Sahni G; Yuan J; Toh YC
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27340925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Enterospheres Derived In Vitro from Human Pluripotent Stem Cells.
    Nadkarni RR; Abed S; Cox BJ; Bhatia S; Lau JT; Surette MG; Draper JS
    Stem Cell Reports; 2017 Sep; 9(3):897-912. PubMed ID: 28867347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human pluripotent-stem-cell-derived organoids for drug discovery and evaluation.
    Vandana JJ; Manrique C; Lacko LA; Chen S
    Cell Stem Cell; 2023 May; 30(5):571-591. PubMed ID: 37146581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.