BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 30290707)

  • 1. The cargo receptor SQSTM1 ameliorates neurofibrillary tangle pathology and spreading through selective targeting of pathological MAPT (microtubule associated protein tau).
    Xu Y; Zhang S; Zheng H
    Autophagy; 2019 Apr; 15(4):583-598. PubMed ID: 30290707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decrease of neuronal FKBP4/FKBP52 modulates perinuclear lysosomal positioning and MAPT/Tau behavior during MAPT/Tau-induced proteotoxic stress.
    Chambraud B; Daguinot C; Guillemeau K; Genet M; Dounane O; Meduri G; Poüs C; Baulieu EE; Giustiniani J
    Autophagy; 2021 Nov; 17(11):3491-3510. PubMed ID: 33459145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway.
    Deng Z; Lim J; Wang Q; Purtell K; Wu S; Palomo GM; Tan H; Manfredi G; Zhao Y; Peng J; Hu B; Chen S; Yue Z
    Autophagy; 2020 May; 16(5):917-931. PubMed ID: 31362587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1.
    Lin H; Sandkuhler S; Dunlea C; Rodwell-Bullock J; King DH; Johnson GVW
    Autophagy; 2024 Mar; 20(3):577-589. PubMed ID: 37899687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MAPT/Tau accumulation represses autophagy flux by disrupting IST1-regulated ESCRT-III complex formation: a vicious cycle in Alzheimer neurodegeneration.
    Feng Q; Luo Y; Zhang XN; Yang XF; Hong XY; Sun DS; Li XC; Hu Y; Li XG; Zhang JF; Li X; Yang Y; Wang Q; Liu GP; Wang JZ
    Autophagy; 2020 Apr; 16(4):641-658. PubMed ID: 31223056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BAG3 and SYNPO (synaptopodin) facilitate phospho-MAPT/Tau degradation via autophagy in neuronal processes.
    Ji C; Tang M; Zeidler C; Höhfeld J; Johnson GV
    Autophagy; 2019 Jul; 15(7):1199-1213. PubMed ID: 30744518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modulation of SQSTM1/p62-mediated xenophagy that targets a broad range of pathogenic bacteria.
    Lee YJ; Kim JK; Jung CH; Kim YJ; Jung EJ; Lee SH; Choi HR; Son YS; Shim SM; Jeon SM; Choe JH; Lee SH; Whang J; Sohn KC; Hur GM; Kim HT; Yeom J; Jo EK; Kwon YT
    Autophagy; 2022 Dec; 18(12):2926-2945. PubMed ID: 35316156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress granule homeostasis is modulated by TRIM21-mediated ubiquitination of G3BP1 and autophagy-dependent elimination of stress granules.
    Yang C; Wang Z; Kang Y; Yi Q; Wang T; Bai Y; Liu Y
    Autophagy; 2023 Jul; 19(7):1934-1951. PubMed ID: 36692217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SSH1 impedes SQSTM1/p62 flux and MAPT/Tau clearance independent of CFL (cofilin) activation.
    Fang C; Woo JA; Liu T; Zhao X; Cazzaro S; Yan Y; Matlack J; Kee T; LePochat P; Kang DE
    Autophagy; 2021 Sep; 17(9):2144-2165. PubMed ID: 33044112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the SEC61 translocon by mycolactone induces a protective autophagic response controlled by EIF2S1-dependent translation that does not require ULK1 activity.
    Hall BS; Dos Santos SJ; Hsieh LT; Manifava M; Ruf MT; Pluschke G; Ktistakis N; Simmonds RE
    Autophagy; 2022 Apr; 18(4):841-859. PubMed ID: 34424124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SQSTM1/p62 and PPARGC1A/PGC-1alpha at the interface of autophagy and vascular senescence.
    Salazar G; Cullen A; Huang J; Zhao Y; Serino A; Hilenski L; Patrushev N; Forouzandeh F; Hwang HS
    Autophagy; 2020 Jun; 16(6):1092-1110. PubMed ID: 31441382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy deficiency activates rDNA transcription.
    Xu Y; Wu Y; Wang L; Ren Z; Song L; Zhang H; Qian C; Wang Q; He Z; Wan W
    Autophagy; 2022 Jun; 18(6):1338-1349. PubMed ID: 34612149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSPB8 frameshift mutant aggregates weaken chaperone-assisted selective autophagy in neuromyopathies.
    Tedesco B; Vendredy L; Adriaenssens E; Cozzi M; Asselbergh B; Crippa V; Cristofani R; Rusmini P; Ferrari V; Casarotto E; Chierichetti M; Mina F; Pramaggiore P; Galbiati M; Piccolella M; Baets J; Baeke F; De Rycke R; Mouly V; Laurenzi T; Eberini I; Vihola A; Udd B; Weiss L; Kimonis V; Timmerman V; Poletti A
    Autophagy; 2023 Aug; 19(8):2217-2239. PubMed ID: 36854646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism.
    Shen WC; Li HY; Chen GC; Chern Y; Tu PH
    Autophagy; 2015 Apr; 11(4):685-700. PubMed ID: 25484089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PTK2/FAK regulates UPS impairment via SQSTM1/p62 phosphorylation in TARDBP/TDP-43 proteinopathies.
    Lee S; Jeon YM; Cha SJ; Kim S; Kwon Y; Jo M; Jang YN; Lee S; Kim J; Kim SR; Lee KJ; Lee SB; Kim K; Kim HJ
    Autophagy; 2020 Aug; 16(8):1396-1412. PubMed ID: 31690171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinoic acid worsens ATG10-dependent autophagy impairment in TBK1-mutant hiPSC-derived motoneurons through SQSTM1/p62 accumulation.
    Catanese A; Olde Heuvel F; Mulaw M; Demestre M; Higelin J; Barbi G; Freischmidt A; Weishaupt JH; Ludolph AC; Roselli F; Boeckers TM
    Autophagy; 2019 Oct; 15(10):1719-1737. PubMed ID: 30939964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The exploitation of host autophagy and ubiquitin machinery by
    Shariq M; Quadir N; Alam A; Zarin S; Sheikh JA; Sharma N; Samal J; Ahmad U; Kumari I; Hasnain SE; Ehtesham NZ
    Autophagy; 2023 Jan; 19(1):3-23. PubMed ID: 35000542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging views of OPTN (optineurin) function in the autophagic process associated with disease.
    Qiu Y; Wang J; Li H; Yang B; Wang J; He Q; Weng Q
    Autophagy; 2022 Jan; 18(1):73-85. PubMed ID: 33783320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome.
    Salminen A; Kaarniranta K; Kauppinen A; Ojala J; Haapasalo A; Soininen H; Hiltunen M
    Prog Neurobiol; 2013; 106-107():33-54. PubMed ID: 23827971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau in cellular and mouse models of tauopathies.
    Akwa Y; Di Malta C; Zallo F; Gondard E; Lunati A; Diaz-de-Grenu LZ; Zampelli A; Boiret A; Santamaria S; Martinez-Preciado M; Cortese K; Kordower JH; Matute C; Lozano AM; Capetillo-Zarate E; Vaccari T; Settembre C; Baulieu EE; Tampellini D
    Autophagy; 2023 Feb; 19(2):660-677. PubMed ID: 35867714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.